Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107304    DOI: 10.1088/1674-1056/ac67cb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure

Yuan Gao(高源)1, Huiping Li(李慧平)2, and Wenguang Zhu(朱文光)1,2,†
1. International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
2. Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Based on first-principles calculations, a two-dimensional (2D) van der Waals (vdW) bilayer heterostructure consisting of two topologically trivial ferromagnetic (FM) monolayers CrI3 and ScCl2 is proposed to realize the quantum anomalous Hall effect (QAHE) with a sizable topologically nontrivial band gap of 4.5 meV. Its topological nature is attributed to an interlayer band inversion between the monolayers and critically depends on the symmetry of the stacking configuration. We further demonstrate that the topologically nontrivial band gap can be increased nearly linearly by the application of a perpendicular external pressure and reaches 8.1 meV at 2.7 GPa, and the application of an external out-of-plane electric field can also modulate the band gap and convert the system back to topologically trivial via eliminating the band inversion. An effective model is developed to describe the topological phase evolution in this bilayer heterostructure. This work provides a new candidate system based on 2D vdW materials for realization of potential high-temperature QAHE with considerable controllability.
Keywords:  quantum anomalous Hall effect      two-dimensional heterostructure  
Received:  24 January 2022      Revised:  07 April 2022      Accepted manuscript online: 
PACS:  73.43.-f (Quantum Hall effects)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.43.Cd (Theory and modeling)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the National Natural Science Foundation of China (Grant No. 11634011), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities (Grant No. WK2340000082).
Corresponding Authors:  Wenguang Zhu     E-mail:  wgzhu@ustc.edu.cn

Cite this article: 

Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光) Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure 2022 Chin. Phys. B 31 107304

[1] Haldane F 1988 Phys. Rev. Lett. 61 2015
[2] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[3] Chang C, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang P, Ji P, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S, He K, Wang Y, Lu L, Ma X and Xue Q 2013 Science 340 167
[4] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731
[5] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201
[6] Bestwick A J, Fox E J, Kou X, Pan L, Wang K L and Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201
[7] Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473
[8] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Takahashi K, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401
[9] Deng Y, Yu Y, Shi M, Guo Z, Xu Z, Wang J, Chen X and Zhang Y 2020 Science 367 895
[10] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522
[11] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2010 Natl. Sci. Rev. 7 1280
[12] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A 2020 Science 367 900
[13] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A and Niu Q 2014 Phys. Rev. Lett. 112 116404
[14] Zhang J, Zhao B, Yao Y and Yang Z 2015 Sci. Rep. 5 10629
[15] Zhang J, Zhao B, Yao Y and Yang Z 2015 Phys. Rev. B 92 165418
[16] Otrokov M, Menshchikova T, Rusinov I, Vergniory M, Kuznetsov V and Chulkov E 2017 JETP Lett. 105 297
[17] Hirahara T, Eremeev S, Shirasawa T, Okuyama Y, Kubo T, Nakanishi R, Akiyama R, Takayama A, Hajiri T, Ideta S, Matsunami M, Sumida K, Miyamoto K, Takagi Y, Tanaka K, Okuda T, Yokoyama T, Kimura S, Hasegawa S and Chulkov E 2017 Nano Lett. 17 3493
[18] Petrov E, Silkin I, Menshchikova T and Chulkov E 2019 JETP Lett. 109 121
[19] Zhang H, Qin W, Chen M, Cui P, Zhang Z and Xu X 2019 Phys. Rev. B 99 165410
[20] Zou R, Zhan F, Zheng B, Wu X, Fan J and Wang R 2020 Phys. Rev. B 101 161108
[21] Zhang H, Ning Y, Yang W, Zhang J, Zhang R and Xu X 2019 Phys. Chem. Chem. Phys. 21 17087
[22] Qi S, Gao R, Chang M, Han Y and Qiao Z 2020 Phys. Rev. B 101 014423
[23] Fu H, Liu C and Yan B 2020 Sci. Adv. 6 eaaz0948
[24] Hogl P, Frank T, Zollner K, Kochan D, Gmitra M and Fabian J 2020 Phys. Rev. Lett. 124 136403
[25] Cui Q, Liang J, Yang B, Wang Z, Li P, Cui P and Yang H 2020 Phys. Rev. B 101 214439
[26] Zhu W, Song C, Liao L, Zhou Z, Bai H, Zhou Y and Pan F 2020 Phys. Rev. B 102 085111
[27] Deng H, Chen Z, Wolos A, Konczykowski M, Sobczak K, Sitnicka J, Fedorchenko I, Borysiuk J, Heider T, Plucinski L, Park K, Georgescu A, Cano J and Elbaum L 2021 Nat. Phys. 17 36
[28] Pan J, Yu J, Zhang Y, Du S, Janotti A, Liu C and Yan Q 2020 npj Comput. Mater. 6 152
[29] Blochl P 1994 Phys. Rev. B 50 17953
[30] Csonka G, Perdew J, Ruzsinszky A, Philipsen P, Lebégue S, Paier J, Vydrov O and Angyan J 2009 Phys. Rev. B 79 155107
[31] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[34] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[35] Mostofi A, Yates J, Lee Y, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[36] Wu Q, Zhang S, Song H, Troyer M and Soluyanov A 2018 Comput. Phys. Comm. 224 405
[37] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[38] Huang B, Clark G, Moratalla E, Klein D, Cheng R, Seyler K, Zhong D, Schmidgall E, McGuire M, Cobden D, Yao W, Xiao D, Herrero P and Xu X 2017 Nature 546 270
[39] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2018 2D Mater. 5 042002
[40] Gjerding M N, Taghizadeh A, Rasmussen A, Ali S, Bertoldo F, Deilmann T, Knosgaard N R, Kruse M, Larsen A H, Manti S, Pedersen T G, Petralanda U, Skovhus T, Svendsen M K, Mortensen J J, Olsen T and Thygesen K S 2021 2D Mater. 8 044002
[41] Zhu Z, Cheng Y and Schwingenschlogl U 2012 Phys. Rev. B 85 235401
[42] Bradlyn B, Elcoro L, Cano J, Vergniory M, Wang Z, Felser C, Aroyo M and Bernevig B 2017 Nature 547 298
[43] Thouless D, Kohmoto M, Nightingale M and Nijs M 1982 Phys. Rev. Lett. 49 405
[44] Tong Q, Yu H, Zhu Q, Wang Y, Xu X and Yao W 2017 Nat. Phys. 13 356
[1] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[4] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[5] Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(8): 087307.
[6] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[7] AlOx/LiF composite protection layer for Cr-doped (Bi, Sb)2Te3 quantum anomalous Hall films
Yunbo Ou(欧云波), Yang Feng(冯洋), Xiao Feng(冯硝), Zhenqi Hao(郝镇齐), Liguo Zhang(张立果), Chang Liu(刘畅), Yayu Wang(王亚愚), Ke He(何珂), Xucun Ma(马旭村), Qikun Xue(薛其坤). Chin. Phys. B, 2016, 25(8): 087307.
[8] Quantum anomalous Hall effect in real materials
Jiayong Zhang(张加永), Bao Zhao(赵宝), Tong Zhou(周通), Zhongqin Yang(杨中芹). Chin. Phys. B, 2016, 25(11): 117308.
[9] From magnetically doped topological insulator to the quantum anomalous Hall effect
He Ke (何珂), Ma Xu-Cun (马旭村), Chen Xi (陈曦), Lü Li (吕力), Wang Ya-Yu (王亚愚), Xue Qi-Kun (薛其坤). Chin. Phys. B, 2013, 22(6): 067305.
No Suggested Reading articles found!