Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034701    DOI: 10.1088/1674-1056/ac2b93
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model

Le Bai(柏乐)1,2, Ming-Lei Shan(单鸣雷)1,2, Yu Yang(杨雨)1, Na-Na Su(苏娜娜)2, Jia-Wen Qian(钱佳文)2, and Qing-Bang Han(韩庆邦)1,2,†
1 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China;
2 College of Internet of Things Engineering, Hohai University, Changzhou 213022, China
Abstract  A two-component lattice Boltzmann method (LBM) with a multiple-relaxation-time (MRT) collision operator is presented to improve the numerical stability of the single relaxation time (SRT) model. The macroscopic and the momentum conservation equations can be retrieved through the Chapman—Enskog (C-E) expansion analysis. The equilibrium moment with the diffusion term is calculated, a diffusion phenomenon is simulated by utilizing the developed model, and the numerical stability is verified. Furthermore, the binary mixture channel model is designed to simulate the sound attenuation phenomenon, and the obtained simulation results are found to be consistent with the analytical solutions. The sound attenuation model is used to study the numerical stability and calculation accuracy of the LBM model. The simulation results show the stability and accuracy of the MRT model and the SRT model under different viscosity conditions. Finally, we study the influence of the error between the macroscopic equation of the MRT model and the standard incompressible Navier—Stokes equation on the calculation accuracy of the model to demonstrate the general applicability of the conclusions drawn by the sound attenuation model in the present study.
Keywords:  two-component lattice Boltzmann method      acoustic attenuation  
Received:  30 July 2021      Revised:  30 August 2021      Accepted manuscript online:  30 September 2021
PACS:  47.11.Qr (Lattice gas)  
  47.55.Ca (Gas/liquid flows)  
  47.35.Rs (Sound waves)  
  47.54.Bd (Theoretical aspects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174085, 11874140, and 11574072), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201913), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_0478).
Corresponding Authors:  Qing-Bang Han     E-mail:  20111841@hhu.edu.cn

Cite this article: 

Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦) Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model 2022 Chin. Phys. B 31 034701

[1] Wang X, Chen W Z, Liang S D, Zhao T Y and Liang J F 2017 Phys. Rev. E 96 019901
[2] Pereira E, Fumeron S and Moraes F 2013 Phys. Rev. E 87 049904
[3] Jia Y Q, Wang S, Zhu M, Zhang K S and Yuan F G 2012 Acta Phys. Sin. 61 095101 (in Chinese)
[4] Zhang K S, Wang S, Zhu M, Hu Y and Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese)
[5] Polachini T C and Mulet A 2021 Appl. Acoust. 177 107922
[6] Ye P C and Pang G 2015 Chin. Phys. B 24 066401
[7] Cheng K X, Wu R R, Liu X Z, Liu J H, Gong X F and Wu J R 2015 Chin. Phys. B 24 044302
[8] Saddeek Y B, Aly k, Ali A M, Somaily H H, Algarni H and Mahmoud I S 2020 Appl. Phys. A 126 370
[9] Kouderis C, Siafarika P and Kalampounias A G 2021 Polymer 217 123479
[10] Townsend L W and Meador W E 1996 J. Acoust. Soc. Am. 99 920
[11] Henderson M C, Herzfeld K F, Coakley J B R and Carriere G 1969 J. Acoust. Soc. Am. 45 109
[12] Shields F D 1988 J. Acoust. Soc. Am. 83 2186
[13] Trondheim 2014 The lattice Boltzmann method:Fundamentals and acoustics (Ph.D. Dissertation) (Norwegian University of Science and Technology)
[14] McNamara G and Zanetti G 1988 Phys. Rev. Lett. 61 2332
[15] He X Y and Luo L S 1997 Phys. Rev. E 55 R6333
[16] He X Y and Luo L S 1997 Phys. Rev. E 56 6811
[17] Shan X and He X 1998 Phys. Rev. Lett. 80 65
[18] Chen S and Doolen G 1998 Annu. Rev. Fluid Mech. 30 329
[19] Kusano K, Yamada K and Furukawa M 2020 J. Sound Vibration 467 115044
[20] Zhang Y, Zhu L, Wang R and Guo Z 2018 Phys. Rev. E 97 053306
[21] Fakhari A and Lee T 2013 Phys. Rev. E 87 023304
[22] Chai Z, Guo X, Wang L and Shi B 2019 Phys. Rev. E 99 023312
[23] Lin K, Luo K H, Fei L, and Succi S 2017 Sci. Rep. 7 14580
[24] Lin C, Xu A, Zhang G, Luo K H and Li Y 2017 Phys. Rev. E 96 053305
[25] Groppi M and Spiga G 2004 Phys. Fluids 16 4273
[26] Makhija D, Pingen G, Yang R and Maute K 2012 Comput. Fluids 67 104
[27] Luo L S and Girimaji S S 2003 Phys. Rev. E 67 036302
[28] Luo L S and Girimaji S S 2002 Phys. Rev. E 66 035301
[29] Li C W, Zhao Y C, Ai D H, Wang Q F, Peng Z G and Li Y J 2020 Physica A 553 124279
[30] Zhang Y, Zhu L H, Wang R J and Guo Z L 2018 Phys. Rev. E 67 036302
[31] Kang J F, Prasianakis N I and Mantzaras J 2014 Phys. Rev. E 97 053306
[32] Lin C D, Xu A G, Zhang G C, Luo K H and Li Y J 2017 Phys. Rev. E 96 053305
[33] Yan G W 2000 J. Computat. Phys. 161 61
[34] Frantziskonis G N 2011 Phys. Rev. E 83 066703
[35] Perko J and Patel R A 2014 Phys. Rev. E 89 053309
[36] Zanten V and Rufener 2000 Phys. Rev. E 62 5389
[37] Ansumail S and Karlin L V 2002 Phys. Rev. E 65 056312
[38] Buick J M, Greated C A and Campbell D M 1998 Europhys. Lett. 43 235
[39] Tuckerman M and Berne B J 1993 J. Chem. Phys. 98 7301
[40] Meng X H and Guo Z L 2015 Phys. Rev. E 92 043305
[41] Bird R B 2002 Appl. Mech. Rev. 55 R1
[42] Xu Z, Yasuda K and Koda S 2013 Ultrason. Sonochem. 20 452
[43] Xu Z 2018 Ultrason. Sonochem. 49 277
[44] Rakotomalala N, Salin D and Watzky P 1997 J. Fluid Mech. 338 277
[45] Leconte M, Martin J, Rakotomalala N and Salin D 2003 Phys. Rev. Lett. 90 128302
[46] Stering J D and Chen S 1996 J. Comput. Phys. 123 196
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[3] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[4] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[5] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[6] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[7] Entropy and weak solutions in the lattice Bhatnagar–Gross–Krook model
Ran Zheng(冉政) and Xu Yu-Peng(许宇鹏) . Chin. Phys. B, 2011, 20(11): 114702.
[8] Thermal equation of state for lattice Boltzmann gases
Ran Zheng(冉政). Chin. Phys. B, 2009, 18(6): 2159-2167.
[9] Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method
Chai Zhen-Hua(柴振华), Shi Bao-Chang(施保昌), and Zheng Lin(郑林). Chin. Phys. B, 2006, 15(8): 1855-1863.
[10] LATTICE BOLTZMANN METHOD SIMULATION ON THE FLOW OF TWO IMMISCIBLE FLUIDS IN COMPLEX GEOMETRY
Fang Hai-ping (方海平), Wan Rong-zheng (万荣正), Fan Le-wen (范乐文). Chin. Phys. B, 2000, 9(7): 515-518.
No Suggested Reading articles found!