Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 093101    DOI: 10.1088/1674-1056/ac7a12
DATA PAPER Prev   Next  

Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence

Mu-Hong Hu(胡木宏)1,†, Nan Wang(王楠)1, Pin-Jun Ouyang(欧阳品均)1, Xin-Jie Feng(冯新杰)1, Yang Yang(杨扬)1, and Chen-Sheng Wu(武晨晟)2,‡
1 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract  Theoretical calculations of the energy levels and magnetic dipole transition parameters for the 1s22s22p3 and 1s22p5 configurations of nitrogen isoelectronic sequence with Z=21-30 are performed using multi-congfiguration Dirac-Fock (MCDF) method. Based on the relativistic computational code GRASP2k compiled within the framework of MCDF method, the electron correlations, Breit interaction and QED effects are well treated in detail. The energy levels, line strengths and transition rates of magnetic dipole transition are obtained and compared with the experimental data available. For most cases, good agreements are achieved and the relative differences of them are less than 0.114%, 8.43% and 9.80%, respectively. The scaling laws of the fine structure splitting and transition rate are obtained on the isoelectronic sequence and the corresponding physical mechanisms are discussed. The data sets for tables are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00022.
Keywords:  energy level      magnetic dipole transition      transition rate      scaling law      nitrogen-like ions      multi-congfiguration Dirac-Fock (MCDF) method  
Received:  31 March 2022      Revised:  30 May 2022      Accepted manuscript online:  18 June 2022
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.15.ve (Electron correlation calculations for atoms and ions: ground state)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175096)
Corresponding Authors:  Mu-Hong Hu, Chen-Sheng Wu     E-mail:  humuhong@163.com;251538424@qq.com

Cite this article: 

Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟) Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence 2022 Chin. Phys. B 31 093101

[1] Kallman T R and Palmeri P 2007 Rev. Mod. Phys. 79 79
[2] Massacrier G and Artru M C 2012 Astronomy & Astrophysics 538 A52
[3] Del Zanna G and Woods T N 2013 Astronomy & Astrophysics 555 A59
[4] Beiersdorfer P, Träbert E, Lepson J K, Brickhouse N S and Golub L 2014 The Astrophysical Journal 25 788
[5] Träbert E, Beiersdorfer P, Brickhouse N S and Golub L 2014a The Astrophysical Journal Supplement Series 6 215
[6] Träbert E, Beiersdorfer P, Brickhouse N S and Golub L 2014b The Astrophysical Journal Supplement Series 14 211
[7] Canizares C R, et al. 2000 The Astrophysical Journal 539 L41
[8] Brinkman A C, et al. 2001 Astronomy & Astrophysics 365 L324
[9] Smith R K, Brickhouse N S, Liedahl D A and Raymond J C 2001 The Astrophysical Journal 556 L91
[10] Desai P, et al. 2005 The Astrophysical Journal 625 L59
[11] Seaton M J 1968 Advances In Atomic Molecular Physics 4 331
[12] Sudkewer S 1981 Physica Scripta 23 72
[13] Mohan A, Landi E 2003 Atomic Data and Nuclear Data Tables 85 317
[14] Merkelis G, Vilkas M J, Kisielius R, Gaigalas G and Martinson I 1997 Physica Scripta 56 41
[15] Merkelis G, Martinson I, Kisielius R and Vilkas M J 1999 Physica Scripta 59 122
[16] Nahar S N 2004 Astronomy & Astrophysics 413 779
[17] Jonauskas V, Bogdanovich P and Keenan F P 2005 Astronomy & Astrophysics 433 745
[18] Kotochigova S, Linnik M, Kirby K P and Brickhouse N S 2010 The Astrophysical Journal Supplement Series 186 85
[19] Rynkun P, Jönsson P, Gaigalas G and Froese Fischer C 2014 Atomic Data and Nuclear Data Tables 100 315
[20] Radžiūtė L, Ekman J, Jönsson P and Gaigalas G 2015 Astronomy & Astrophysics 582 A61
[21] Gu M F 2005 The Astrophysical Journal Supplement Series 156 105
[22] Wang K, Si R, Dang W, Jönsson P, Guo X L, Li S, Chen Z B, Zhang H, Long F Y, Liu H T, Li D. F, Hutton R, Chen C Y and Yan J 2016 The Astrophysical Journal Supplement Series 223 3
[23] Wang W Y 1992 Acta Phys. Sin. 41 726 (in Chinese)
[24] Gao X, Han X Y, Zeng D L, Jin R and Li J M 2014 Phys. Lett. A 378 1515
[25] Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514
[26] Kim Y K and Desclaux J P 1976 Phys. Rev. Lett. 36 139
[27] Cheng K T, Kim Y K and Desclaux J P 1979 Atomic Data and Nuclear Data Tables 24 111
[28] Fischer C F, Brage T and Jonsson P 1997 Computational Atomic Structure:An MCHF Approach (Bristol:Institute of Physics Publishing)
[29] Dong C Z, Xie L Y, Zhou X X, Ma X W and Fritzsche S 2003 Hyperfine Interact 146/147 161
[30] Dietrich D D, Leavitt J A, Bashkin S, Conway J G, Gould H M, Donald D, Marrus R, Johnson B M and Pegg D J 1977 Phys. Rev. 18 208
[31] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Computer Physics Communications 55 425
[32] Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z, Nakamura N, Komatsu A and Sakoda J 2011 J. Phys. B:Atom. Mol. Opt. Phys. 44 145004
[33] Ding X, Sun R, Koike F, Kato D, Murakami I, Sakaue H A and Dong C Z 2017 Euro. Phys. J. D 71 73
[34] Liu J P, Li C B and Zou H X 2017 Chin. Phys. B 26 103210
[35] Ding X B, Sun R, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N and Dong C Z 2017 J. Phys. B:Atom. Mol. Opt. Phys. 50 045004
[36] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (Berlin:Springer)
[37] Jonsson P, He X, Froese F C and Grant I P 2007 Computer Physics Communications 177 597
[38] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Computer Physics Communications 55 425
[39] The National Institute of Standards and Technology[DB/OL] http://www.nist.com.gov/.pmla
[40] Kramida A, Ralchenko Y and Reader J 2014 NIST ASD Team, NIST Atomic Spectra Database (ver. 5.2) (http://physicsnistgov/asd National Institute of Standards and Technology Gaithersburg,MD)
[41] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley, CA:University of California Press)
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65)
Bao-Ling Shi(施宝玲), Yi Qin(秦毅), Xiang-Fu Li(李向富), Bang-Lin Deng(邓邦林), Gang Jiang(蒋刚), and Xi-Long Dou(豆喜龙). Chin. Phys. B, 2022, 31(5): 053102.
[3] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[4] M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94
Ju Meng(孟举), Wen-Xian Li(李文显), Ji-Guang Li(李冀光), Ze-Qing Wu(吴泽清), Jun Yan(颜君), Yong Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(1): 013101.
[5] Transition parameters of Li-like ions (Z=7-11) in dense plasmas
Xiang-Fu Li(李向富), Li-Ping Jia(贾利平), Hong-Bin Wang(王宏斌), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(5): 053102.
[6] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[7] Forbidden transition properties of fine-structure 2p3 4S3/2-2p3 2D3/2,5/2 for nitrogen-like ions
Xiao-Kang He(何晓康), Jian-Peng Liu(刘建鹏), Xiang Zhang(张祥), Yong Shen(沈咏), Hong-Xin Zou(邹宏新). Chin. Phys. B, 2018, 27(8): 083102.
[8] Relativistic calculations of fine-structure energy levels of He-like Ar in dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚). Chin. Phys. B, 2018, 27(7): 073101.
[9] Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs
Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良). Chin. Phys. B, 2018, 27(2): 027103.
[10] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[11] Analytical solutions for a doubly driven two-level atom
Jin-Yun Liu(刘晋允), Feng-Dong Jia(贾凤东), Xiao-Kang Li(李晓康), Shuang-Fei Lv(吕双飞), Xiang-Yuan Xu(许祥源), Ping Xue(薛平), Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2017, 26(7): 074203.
[12] Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII
R T Nazir, M A Bari, M Bilal, S Sardar, M H Nasim, M Salahuddin. Chin. Phys. B, 2017, 26(2): 023102.
[13] Equivalent electron correlations in nonsequential double ionization of noble atoms
Shansi Dong(董善思), Qiujing Han(韩秋静), Jingtao Zhang(张敬涛). Chin. Phys. B, 2017, 26(2): 023202.
[14] Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(12): 124101.
[15] Comment on “Atomic structure calculations for F-like tungsten” by S. Aggarwal [Chin. Phys B 23 (2014) 093203]
Kanti M Aggarwal. Chin. Phys. B, 2016, 25(4): 043201.
No Suggested Reading articles found!