Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏)1,†, Nan Wang(王楠)1, Pin-Jun Ouyang(欧阳品均)1, Xin-Jie Feng(冯新杰)1, Yang Yang(杨扬)1, and Chen-Sheng Wu(武晨晟)2,‡
1 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract Theoretical calculations of the energy levels and magnetic dipole transition parameters for the 1s22s22p3 and 1s22p5 configurations of nitrogen isoelectronic sequence with Z=21-30 are performed using multi-congfiguration Dirac-Fock (MCDF) method. Based on the relativistic computational code GRASP2k compiled within the framework of MCDF method, the electron correlations, Breit interaction and QED effects are well treated in detail. The energy levels, line strengths and transition rates of magnetic dipole transition are obtained and compared with the experimental data available. For most cases, good agreements are achieved and the relative differences of them are less than 0.114%, 8.43% and 9.80%, respectively. The scaling laws of the fine structure splitting and transition rate are obtained on the isoelectronic sequence and the corresponding physical mechanisms are discussed. The data sets for tables are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00022.
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟) Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence 2022 Chin. Phys. B 31 093101
[1] Kallman T R and Palmeri P 2007 Rev. Mod. Phys.79 79 [2] Massacrier G and Artru M C 2012 Astronomy & Astrophysics 538 A52 [3] Del Zanna G and Woods T N 2013 Astronomy & Astrophysics 555 A59 [4] Beiersdorfer P, Träbert E, Lepson J K, Brickhouse N S and Golub L 2014 The Astrophysical Journal25 788 [5] Träbert E, Beiersdorfer P, Brickhouse N S and Golub L 2014a The Astrophysical Journal Supplement Series6 215 [6] Träbert E, Beiersdorfer P, Brickhouse N S and Golub L 2014b The Astrophysical Journal Supplement Series14 211 [7] Canizares C R, et al. 2000 The Astrophysical Journal539 L41 [8] Brinkman A C, et al. 2001 Astronomy & Astrophysics 365 L324 [9] Smith R K, Brickhouse N S, Liedahl D A and Raymond J C 2001 The Astrophysical Journal556 L91 [10] Desai P, et al. 2005 The Astrophysical Journal625 L59 [11] Seaton M J 1968 Advances In Atomic Molecular Physics4 331 [12] Sudkewer S 1981 Physica Scripta23 72 [13] Mohan A, Landi E 2003 Atomic Data and Nuclear Data Tables85 317 [14] Merkelis G, Vilkas M J, Kisielius R, Gaigalas G and Martinson I 1997 Physica Scripta56 41 [15] Merkelis G, Martinson I, Kisielius R and Vilkas M J 1999 Physica Scripta59 122 [16] Nahar S N 2004 Astronomy & Astrophysics413 779 [17] Jonauskas V, Bogdanovich P and Keenan F P 2005 Astronomy & Astrophysics433 745 [18] Kotochigova S, Linnik M, Kirby K P and Brickhouse N S 2010 The Astrophysical Journal Supplement Series186 85 [19] Rynkun P, Jönsson P, Gaigalas G and Froese Fischer C 2014 Atomic Data and Nuclear Data Tables100 315 [20] Radžiūtė L, Ekman J, Jönsson P and Gaigalas G 2015 Astronomy & Astrophysics 582 A61 [21] Gu M F 2005 The Astrophysical Journal Supplement Series156 105 [22] Wang K, Si R, Dang W, Jönsson P, Guo X L, Li S, Chen Z B, Zhang H, Long F Y, Liu H T, Li D. F, Hutton R, Chen C Y and Yan J 2016 The Astrophysical Journal Supplement Series223 3 [23] Wang W Y 1992 Acta Phys. Sin.41 726 (in Chinese) [24] Gao X, Han X Y, Zeng D L, Jin R and Li J M 2014 Phys. Lett. A378 1515 [25] Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A89 042514 [26] Kim Y K and Desclaux J P 1976 Phys. Rev. Lett.36 139 [27] Cheng K T, Kim Y K and Desclaux J P 1979 Atomic Data and Nuclear Data Tables24 111 [28] Fischer C F, Brage T and Jonsson P 1997 Computational Atomic Structure:An MCHF Approach (Bristol:Institute of Physics Publishing) [29] Dong C Z, Xie L Y, Zhou X X, Ma X W and Fritzsche S 2003 Hyperfine Interact146/147 161 [30] Dietrich D D, Leavitt J A, Bashkin S, Conway J G, Gould H M, Donald D, Marrus R, Johnson B M and Pegg D J 1977 Phys. Rev.18 208 [31] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Computer Physics Communications55 425 [32] Ding X B, Koike F, Murakami I, Kato D, Sakaue H A, Dong C Z, Nakamura N, Komatsu A and Sakoda J 2011 J. Phys. B:Atom. Mol. Opt. Phys.44 145004 [33] Ding X, Sun R, Koike F, Kato D, Murakami I, Sakaue H A and Dong C Z 2017 Euro. Phys. J. D71 73 [34] Liu J P, Li C B and Zou H X 2017 Chin. Phys. B26 103210 [35] Ding X B, Sun R, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N and Dong C Z 2017 J. Phys. B:Atom. Mol. Opt. Phys.50 045004 [36] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (Berlin:Springer) [37] Jonsson P, He X, Froese F C and Grant I P 2007 Computer Physics Communications177 597 [38] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Computer Physics Communications55 425 [39] The National Institute of Standards and Technology[DB/OL] http://www.nist.com.gov/.pmla [40] Kramida A, Ralchenko Y and Reader J 2014 NIST ASD Team, NIST Atomic Spectra Database (ver. 5.2) (http://physicsnistgov/asd National Institute of Standards and Technology Gaithersburg,MD) [41] Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley, CA:University of California Press)
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.