Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114501    DOI: 10.1088/1674-1056/ac7dc0

Rolling velocity and relative motion of particle detector in local granular flow

Ran Li(李然)1,†, Bao-Lin Liu(刘宝林)1, Gang Zheng(郑刚)1, and Hui Yang(杨晖)2,‡
1 School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  The velocity of a particle detector in granular flow can be regarded as the combination of rolling and sliding velocities. The study of the contribution of rolling velocity and sliding velocity provides a new explanation to the relative motion between the detector and the local granular flow. In this study, a spherical detector using embedded inertial navigation technology is placed in the chute granular flow to study the movement of the detector relative to the granular flow. It is shown by particle image velocimetry (PIV) that the velocity of chute granular flow conforms to Silbert's formula. And the velocity of the detector is greater than that of the granular flow around it. By decomposing the velocity into sliding and rolling velocity, it is indicated that the movement of the detector relative to the granular flow is mainly caused by rolling. The rolling detail shown by DEM simulation leads to two potential mechanisms based on the position and drive of the detector.
Keywords:  local velocity distribution      rolling velocity      inertial navigation technology      relative velocity dependent (RVD) rolling friction  
Received:  09 May 2022      Revised:  27 June 2022      Accepted manuscript online:  02 July 2022
PACS:  45.70.-n (Granular systems)  
  45.70.Ht (Avalanches)  
  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11972212, 12072200, and 12002213).
Corresponding Authors:  Ran Li, Hui Yang     E-mail:;

Cite this article: 

Ran Li(李然), Bao-Lin Liu(刘宝林), Gang Zheng(郑刚), and Hui Yang(杨晖) Rolling velocity and relative motion of particle detector in local granular flow 2022 Chin. Phys. B 31 114501

[1] Zhang S, Wei K, Xiao Y, Ma X H, Zhang Y C, Liu G G, Lei T M, Zheng Y K, Huang S, Wang N, Asif M and Liu X Y 2018 Chin. Phys. B 27 097309
[2] Louge M Y and Keast S C 2001 Phys. Fluids 13 1213
[3] Lemieux P A and Durian D J 2000 Phys. Rev. Lett. 85 4273
[4] Zheng Q J, Bai L, Yang L and Yu A B 2019 Ind. Eng. Chem. Res. 58 19251
[5] Umbanhowar P B, Lueptow R M and Ottino J M 2019 Annu. Rev. Chem. Biom. Eng. 10 11
[6] Pouliquen O and Forterre Y 2002 J. Fluid Mech. 453 133
[7] Pouliquen O and Forterre Y 2009 Philos. Trans. Royal Soc. A 367 5091
[8] Jop P, Forterre Y and Pouliquen O 2006 Nature 441 727
[9] Midi G 2004 Eur. Phys. J. E 14 341
[10] Cruz F D, Emam S, Prochnow M, Roux J N and Chevoir F 2005 Phys. Rev. E 72 021309
[11] Forterre Y and Pouliquen O 2011 Glass and Grains 61 77
[12] Tripathi A and Khakhar D V 2011 Phys. Fluids 23 147
[13] Halsey T C 2009 Phys. Rev. E 80 011303
[14] Wang R, Li R, Wang S S, Chen Q and Yang H 2021 Particuology 54 102
[15] Wang S S, Li R, Chen Q, Zheng G, Zivkovic V and Yang H 2020 Powder Technol. 376 22
[16] Caviezel A, Schaffner M, Cavigelli L, Buhler Y, Bartelt P and Magno M 2018 IEEE Trans. Instrum. Meas. 67 1
[17] Caviezel A, Demmel S E, Ringenbach A, Buhler Y, Lu G, Christen M, Dinneen C E, Eberhard L A, Rickenbach D V and Bartelt P 2019 Earth Surf. Dynam. 7 199
[18] Zhu Y H, Yang H, Li R, Zhang Y J, Chen Q, Hua Y S, Sun Q C and Kong P 2020 Powder Technol. 360 882
[19] Yang H, Zhang G, Wang Y and Sun Q C 2018 Adv. Mech. 48 541
[20] Dong Y X, Zhang G H, Sun Q C, Zhao X D and Niu X N 2015 Chin. Phys. Lett. 32 126201
[21] Song Z B, Yang X Y, Feng W X, Xi Z H, Li L J and Shi Y R 2018 Chin. Phys. B 27 074501
[22] Feng Y and Yuan Z R 2021 Comput. Part. Mech. 8 21
[23] Yu Y W and Saxen H 2011 Adv. Powder Technol. 22 324
[24] Tripathi A, Kumar V, Agarwal A, Tripathi A, Basu S, Chakrabarty A and Nag S 2021 Powder Technol. 380 288
[25] Ozdemir M and Ergin A A 2006 J. Geom. Phys. 56 322
[26] Sabatelli S, Galgani M, Fanucci L and Rocchi A 2013 IEEE Trans. Instrum. Meas. 62 590
[27] Ai J, Chen J F, Rotter J M and Ooi J Y 2011 Powder Technol. 206 269
[28] Silbert L E, Ertas D, Grest G S, Halsey T C, Levine D and Plimpton S J 2001 Phys. Rev. E 64 051302
[29] Washino K, Chan E L, Miyazaki K, Tsuji T and Tanaka T 2016 Powder Technol. 302 100
[30] H?hner D, Wirtz S and Scherer V 2013 Powder Technol. 235 614
[1] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[2] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[3] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[4] Parametric study of the clustering transition in vibration driven granular gas system
Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟). Chin. Phys. B, 2020, 29(5): 054502.
[5] Influence of particle packing structure on sound velocity
Chuang Zhao(赵闯), Cheng-Bo Li(李成波), Lin Bao(鲍琳). Chin. Phys. B, 2018, 27(10): 104501.
[6] Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity
Wen-Guang Wang(王文广), Mei-Ying Hou(厚美瑛), Ke Chen(陈科), Pei-Dong Yu(虞培东), Matthias Sperl. Chin. Phys. B, 2018, 27(8): 084501.
[7] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[8] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[9] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[10] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[11] X-ray tomography study on the structure of the granular random loose packing
Yi Xing(邢义), Yu-Peng Qiu(邱宇鹏), Zhi Wang(王智), Jia-Chao Ye(叶佳超), Xiang-Ting Li(李向亭). Chin. Phys. B, 2017, 26(8): 084503.
[12] DEM simulation of granular segregation in two-compartment system under zero gravity
Wenguang Wang(王文广), Zhigang Zhou(周志刚), Jin Zong(宗谨), Meiying Hou(厚美瑛). Chin. Phys. B, 2017, 26(4): 044501.
[13] Granular packing as model glass formers
Yujie Wang(王宇杰). Chin. Phys. B, 2017, 26(1): 014503.
[14] The anisotropy of free path in a vibro-fluidized granular gas
Yifeng Mei(梅一枫), Yanpei Chen(陈延佩), Wei Wang(王维), Meiying Hou(厚美瑛). Chin. Phys. B, 2016, 25(8): 084501.
[15] Biphasic behavior of energy in a stepped chain
Ping-Jian Wang(王平建), Ai-Xiang He(何爱香), Zhong-Hai Lin(林忠海), Guang-Fen Wei(魏广芬), Yan-Li Liu(刘燕丽). Chin. Phys. B, 2016, 25(6): 064501.
No Suggested Reading articles found!