Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068703    DOI: 10.1088/1674-1056/ac474b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band

Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强)
College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract  In the terahertz band, the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section (RCS) measurement, which is inconsistent with the electrodynamics similitude deducted according to the Maxwell's equations. Based on the high-frequency estimation method of physical optics (PO), a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets. Simulations of the model of SLICY are conducted, and the inversed RCS of the lossy prototype is obtained using the proposed method. Comparing the inversed RCS with the calculated results, the validity of the proposed method is demonstrated. The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.
Keywords:  scaled measurement method      radar cross section      lossy targets      terahertz  
Received:  26 October 2021      Revised:  17 December 2021      Accepted manuscript online:  31 December 2021
PACS:  87.50.U-  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
  94.30.Tz (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871386, 61971427, 62035014, and 61921001) and the Natural Science Fund for Distinguished Young Scholars of Hunan Province, China (Grant No. 2019JJ20022).
Corresponding Authors:  Yang Zeng     E-mail:  zengyang@nudt.edu.cn

Cite this article: 

Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强) Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band 2022 Chin. Phys. B 31 068703

[1] Knott E F 2004 Radar Cross Section Second Edition (Raleigh: SciTech Publishing)
[2] Ruan Y Z 1998 Radar Cross Section and Stealth Technology (Beijing: National Defense Industry Press)
[3] Sinclair G 1948 Proceedings of the IRE 36 1364
[4] Schumacher C R 1987 J. Appl. Phys. 62 2616
[5] Wang H Q, Deng B and Qin Y L 2018 Journal of Radars 7 1 (in Chinese)
[6] Cooper K B, Dengler R J, Lombart N, et al. 2011 IEEE T. THz Sci. Technol. 1 169
[7] Wu Y, et al. 2018 Journal of Radars 7 147 (in Chinese)
[8] Lui H S, Taimre T, Bertling K, et al. 2015 Electron. Lett. 51 1774
[9] Qiao H Z, Zhong K, Shi J, et al. 2021 J. Infrared Millim. Waves 40 341
[10] Guo S B, Zhong K, Wang M R, et al. 2017 Chin. Phys. B 26 019501
[11] Gente R, et al. 2012 IEEE T. Thz Sci. Technol. 2 424
[12] Henry S C, Schecklman S, Kniffin G P, et al. 2010 Proceedings of SPIE - the International Society for Optical Engineering
[13] Lonnqvist A, Mallat J and Raisanen A V 2006 IEEE T. Microw Theory 54 2391
[14] Jansen C, et al. 2009 Scaled radar cross section measurements with terahertz-spectroscopy up to 800 GHz, European Conference on Antennas & Propagation
[15] Iwaszczuk K, Heiselberg H and Jepsen P U 2010 Opt. Express 18 26399
[16] Liang D C, et al. 2014 Acta Phys. Sin. 63 85 (in Chinese)
[17] Shi Z D, Ding C S and Chen J Y 1993 Chin. Phys. Lett. 10 347
[18] Shi Z D 1992 Microw. Opt. Technol. Lett. 5 325
[19] Liu T J and Zhang X Y 1992 Acta Electron. Sin. 20 12
[20] Song W J and Zhang H 2017 IEEE T. Microw. Theory 65 1939
[21] Wu Z S 1993 Journal of Electronics (China) 10 298
[22] Zhao Y, Zhang M and Chen H 2012 IEEE T. Antenn. Propag. 60 5890
[23] Yuan L M, et al. 2018 Chin. Phys. B 27 044101
[24] Wei F M, et al. 2019 Appl. Phys. A 125 0947
[25] Gordon W B 1975 IEEE T. Antenn. Propag. 23 864
[26] Zhuang Z W, et al. 2007 Estimation and measurement of radar cross section of military targets (Beijing: Science Press)
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[14] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[15] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
No Suggested Reading articles found!