1 Ion Beam and Optical Physical Laboratory, Xianyang Normal University, Xianyang 712000, China; 2 Institute of Science and Technology for Laser and Particle Beams, Xi'an Jiaotong University, Xi'an 710049, China; 3 Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
Abstract The electron emission yield is measured from the tungsten surface bombarded by the protons in an energy range of 50 keV-250 keV at different temperatures. In our experimental results, the total electron emission yield, which contains mainly the kinetic electron emission yield, has a very similar change trend to the electronic stopping power. At the same time, it is found that the ratio of total electron emission yield to electronic stopping power becomes smaller as the incident ion energy increases. The experimental result is explained by the ionization competition mechanism between electrons in different shells of the target atom. The explanation is verified by the opposite trends to the incident energy between the ionization cross section of M and outer shells.
(Atomic, molecular, and ion beam impact and interactions with surfaces)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11605147, 11375138, and 11505248), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant Nos. 2019JQ-493 and 2021JQ-812), the Scientific Research Program Funded by Shaanxi Provincial Education Department, Shaanxi Province, China (Grant Nos. 20JK0975 and 16JK1824), the Shaanxi University Young Outstanding Talents Support Program, the Xianyang Normal University Young and Middle-aged Top-notch Talents Project, Shaanxi Province, China (Grant No. XSYBJ202004), and the Academic Leader Project of Xianyang Normal University, Shaanxi Province, China (Grant No. XSYXSDT202109).
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋) Electron emission induced by keV protons from tungsten surface at different temperatures 2022 Chin. Phys. B 31 073202
[1] Uhm H S, Choi E H and Cho G S 2009 Appl. Phys. Lett.94 031501 [2] Hoffmann D H, Blazevic A, Korostiy S, Ni P, Pikuz S A, Rosmej O, Roth M, Tahir N A, Udrea S, Varentsov D, Weyrich K, Sharkov B Y and Maron Y 2007 Nucl. Instr. Method Phys. Res. Sec. A577 8 [3] Winter H P and Burgdörfer J 2007 Slow Heavy-Particle Induced Electron Emission from Solid Surfaces (Berlin, Heidelberg, New York:Springer) pp. 39-72 [4] Zhou X M, Wei J, Cheng R, Chen Y H, Mei C X, Zeng L X, Liang C H, Li Y Z, Zhao Y T and Zhang X A 2021 Chin. Phys. B30 083201 [5] Sporn M, Libiseller G, Neidhart T, Schmid M, Aumayr F, Winter HP, Varga P, Grether M, Niemann D and Stolterfoht N 1997 Phys. Rev. Lett.79 945 [6] Hayderer G, Schmid M, Varga P, Winter H P, Aumayr F, Wirtz L, Lemell C, Burgdörfer J, Hägg L and Reinhold C O 1999 Phys. Rev. Lett.83 3948 [7] Eder H, Messerschmidt W, Winter H P and Aumayr F 2000 J. Appl. Phys.87 8198 [8] Wang Y Y, Sun J R, Zhao Y T, Cheng R, Ren J R, Yu Y and Zhou X M 2013 Nucl. Instr. Method B317 33 [9] Wang X, Zhao Y T, Cheng R, Zhou X M, Xu G, Sun Y B, Lei Y, Wang Y Y, Ren J R, Yu Y, Li Y F, Zhang X A, Li Y Z, Liang C H and Xiao G Q 2012 Phys. Lett. A376 1197 [10] Winter H and Aumayr F 1999 J. Phys. B:At., Mol. Opt. Phys.32 39 [11] Xu Z F, Zeng L X, Zhao Y T, Wang J G, Wang Y Y, Zhang X A, Xiao G Q and Li F L 2012 Laser Part. Beams30 319 [12] Zeng L X, Xu Z F, Zhao Y T, Wang Y Y, Wang J G, Cheng R, Zhang X A, Ren J R, Zhou X M, Wang X, Lei Y, Li Y F, Yu Y, Liu X L, Xiao G Q and Li F L 2012 Laser Part. Beams30 707 [13] Zeng L X, Zhou X M, Cheng R, Wang X, Ren J R, Lei Y, Ma L D, Zhao Y T, Zhang X A and Xu Z F 2017 Sci. Rep.7 6482 [14] Hughes I G, Folkerts L, Folkerts L, et al. 1993 Phys. Rev. Lett.71 291 [15] Vana M, Kurz H, Winter H P and Aumayr F 1995 Nucl. Instr. Method B100 402 [16] Mcguire J H and Richard P 1973 Phys. Rev. A8 1374 [17] Johnson D E, Basbas G and Mcdaniel F D 1979 At. Data Nucl. Data Tables24 1 [18] Lapicki G and Mcdaniel F D 1980 Phys. Rev. A22 1896 [19] Miranda J and Lapicki G 2014 At. Data Nucl. Data Tables100 651 [20] Zhou X M, Zeng L X, Cheng R, Lei Y, Chen Y H, Xu Z F, Chen X M, Wang Y Y, Zhao Y T and Xiao G Q 2017 Nucl. Instr. Method B406 491 [21] Zhao Y T, Xiao G Q, Xu H S, Zhao H W, Xia J W, Jin G M, Ma X W, Liu Y, Yang Z H, Zhang P M, Wang Y Y, Li D H, Zhao H Y, Zhan W L, Xu Z F, Zhao D, Li F L and Chen X M 2009 Nucl. Instr. Method B267 163 [22] Zhang X A, Zhao Y T, Hoffmann D H, Yang Z H, Chen X M, Xu Z F, Li F L and Xiao G Q 2011 Laser Part. Beams29 265 [23] Ewing R I 1965 Phys. Rev.139 1840 [24] http://www.srim.org/SRIM/SRIM2011.htm [25] Hölzl J and Schulte F K 1979 Springer Tr. in Mod. Phys. (Solid State Phys.) 85 1 [26] Stoöck J, Suta T, Ditroi F, Winter H P and Aumayr F 2004 Phys. Rev. Lett.93 263201 [27] Kishinevsky L M 1973 Radiat. Effects19 23 [28] Ritzau S M and Baragiola R A 1998 Phys. Rev. B58 2529 [29] Zhao Y T, Xiao G Q, Xu Z F, Qayyum A, Wang Y Y, Zhang X A, Li F L and Zhan W L 2007 Acta Phys. Sin.56 5734 (in Chinese) [30] Garcia J D, Fortner R J and Kavanagh T M 1970 Rev. Mod. Phys.45 111
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.