Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 073202    DOI: 10.1088/1674-1056/ac632f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electron emission induced by keV protons from tungsten surface at different temperatures

Li-Xia Zeng(曾利霞)1,2,†, Xian-Ming Zhou(周贤明)1,2, Rui Cheng(程锐)3, Yu Liu(柳钰)1, Xiao-An Zhang(张小安)1,3, and Zhong-Feng Xu(徐忠锋)2,3,‡
1 Ion Beam and Optical Physical Laboratory, Xianyang Normal University, Xianyang 712000, China;
2 Institute of Science and Technology for Laser and Particle Beams, Xi'an Jiaotong University, Xi'an 710049, China;
3 Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
Abstract  The electron emission yield is measured from the tungsten surface bombarded by the protons in an energy range of 50 keV-250 keV at different temperatures. In our experimental results, the total electron emission yield, which contains mainly the kinetic electron emission yield, has a very similar change trend to the electronic stopping power. At the same time, it is found that the ratio of total electron emission yield to electronic stopping power becomes smaller as the incident ion energy increases. The experimental result is explained by the ionization competition mechanism between electrons in different shells of the target atom. The explanation is verified by the opposite trends to the incident energy between the ionization cross section of M and outer shells.
Keywords:  electron emission      x-ray      electronic stopping power      work function  
Received:  26 November 2021      Revised:  17 February 2022      Accepted manuscript online:  01 April 2022
PACS:  32.80.Aa (Inner-shell excitation and ionization)  
  32.30.Rj (X-ray spectra)  
  34.80.Dp (Atomic excitation and ionization)  
  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11605147, 11375138, and 11505248), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant Nos. 2019JQ-493 and 2021JQ-812), the Scientific Research Program Funded by Shaanxi Provincial Education Department, Shaanxi Province, China (Grant Nos. 20JK0975 and 16JK1824), the Shaanxi University Young Outstanding Talents Support Program, the Xianyang Normal University Young and Middle-aged Top-notch Talents Project, Shaanxi Province, China (Grant No. XSYBJ202004), and the Academic Leader Project of Xianyang Normal University, Shaanxi Province, China (Grant No. XSYXSDT202109).
Corresponding Authors:  Li-Xia Zeng, Zhong-Feng Xu     E-mail:  zenglixia1982@126.com;zhfxu@mail.xjtu.edu.cn

Cite this article: 

Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋) Electron emission induced by keV protons from tungsten surface at different temperatures 2022 Chin. Phys. B 31 073202

[1] Uhm H S, Choi E H and Cho G S 2009 Appl. Phys. Lett. 94 031501
[2] Hoffmann D H, Blazevic A, Korostiy S, Ni P, Pikuz S A, Rosmej O, Roth M, Tahir N A, Udrea S, Varentsov D, Weyrich K, Sharkov B Y and Maron Y 2007 Nucl. Instr. Method Phys. Res. Sec. A 577 8
[3] Winter H P and Burgdörfer J 2007 Slow Heavy-Particle Induced Electron Emission from Solid Surfaces (Berlin, Heidelberg, New York:Springer) pp. 39-72
[4] Zhou X M, Wei J, Cheng R, Chen Y H, Mei C X, Zeng L X, Liang C H, Li Y Z, Zhao Y T and Zhang X A 2021 Chin. Phys. B 30 083201
[5] Sporn M, Libiseller G, Neidhart T, Schmid M, Aumayr F, Winter HP, Varga P, Grether M, Niemann D and Stolterfoht N 1997 Phys. Rev. Lett. 79 945
[6] Hayderer G, Schmid M, Varga P, Winter H P, Aumayr F, Wirtz L, Lemell C, Burgdörfer J, Hägg L and Reinhold C O 1999 Phys. Rev. Lett. 83 3948
[7] Eder H, Messerschmidt W, Winter H P and Aumayr F 2000 J. Appl. Phys. 87 8198
[8] Wang Y Y, Sun J R, Zhao Y T, Cheng R, Ren J R, Yu Y and Zhou X M 2013 Nucl. Instr. Method B 317 33
[9] Wang X, Zhao Y T, Cheng R, Zhou X M, Xu G, Sun Y B, Lei Y, Wang Y Y, Ren J R, Yu Y, Li Y F, Zhang X A, Li Y Z, Liang C H and Xiao G Q 2012 Phys. Lett. A 376 1197
[10] Winter H and Aumayr F 1999 J. Phys. B:At., Mol. Opt. Phys. 32 39
[11] Xu Z F, Zeng L X, Zhao Y T, Wang J G, Wang Y Y, Zhang X A, Xiao G Q and Li F L 2012 Laser Part. Beams 30 319
[12] Zeng L X, Xu Z F, Zhao Y T, Wang Y Y, Wang J G, Cheng R, Zhang X A, Ren J R, Zhou X M, Wang X, Lei Y, Li Y F, Yu Y, Liu X L, Xiao G Q and Li F L 2012 Laser Part. Beams 30 707
[13] Zeng L X, Zhou X M, Cheng R, Wang X, Ren J R, Lei Y, Ma L D, Zhao Y T, Zhang X A and Xu Z F 2017 Sci. Rep. 7 6482
[14] Hughes I G, Folkerts L, Folkerts L, et al. 1993 Phys. Rev. Lett. 71 291
[15] Vana M, Kurz H, Winter H P and Aumayr F 1995 Nucl. Instr. Method B 100 402
[16] Mcguire J H and Richard P 1973 Phys. Rev. A 8 1374
[17] Johnson D E, Basbas G and Mcdaniel F D 1979 At. Data Nucl. Data Tables 24 1
[18] Lapicki G and Mcdaniel F D 1980 Phys. Rev. A 22 1896
[19] Miranda J and Lapicki G 2014 At. Data Nucl. Data Tables 100 651
[20] Zhou X M, Zeng L X, Cheng R, Lei Y, Chen Y H, Xu Z F, Chen X M, Wang Y Y, Zhao Y T and Xiao G Q 2017 Nucl. Instr. Method B 406 491
[21] Zhao Y T, Xiao G Q, Xu H S, Zhao H W, Xia J W, Jin G M, Ma X W, Liu Y, Yang Z H, Zhang P M, Wang Y Y, Li D H, Zhao H Y, Zhan W L, Xu Z F, Zhao D, Li F L and Chen X M 2009 Nucl. Instr. Method B 267 163
[22] Zhang X A, Zhao Y T, Hoffmann D H, Yang Z H, Chen X M, Xu Z F, Li F L and Xiao G Q 2011 Laser Part. Beams 29 265
[23] Ewing R I 1965 Phys. Rev. 139 1840
[24] http://www.srim.org/SRIM/SRIM2011.htm
[25] Hölzl J and Schulte F K 1979 Springer Tr. in Mod. Phys. (Solid State Phys.) 85 1
[26] Stoöck J, Suta T, Ditroi F, Winter H P and Aumayr F 2004 Phys. Rev. Lett. 93 263201
[27] Kishinevsky L M 1973 Radiat. Effects 19 23
[28] Ritzau S M and Baragiola R A 1998 Phys. Rev. B 58 2529
[29] Zhao Y T, Xiao G Q, Xu Z F, Qayyum A, Wang Y Y, Zhang X A, Li F L and Zhan W L 2007 Acta Phys. Sin. 56 5734 (in Chinese)
[30] Garcia J D, Fortner R J and Kavanagh T M 1970 Rev. Mod. Phys. 45 111
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[6] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[7] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[8] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[9] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[10] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[11] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[12] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[13] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[14] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[15] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
No Suggested Reading articles found!