Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088803    DOI: 10.1088/1674-1056/23/8/088803
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Photoinduced degradation of organic solar cells with different microstructures

Lu Chun-Xi (路春希)a b, Yan Peng (闫鹏)b, Wang Jin-Ze (王金泽)b, Liu Ai-Min (刘爱民)a c, Song De (宋德)d, Jiang Chao (江潮)b
a College of New Energy, Bohai University, Jinzhou 121013, China;
b CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China;
c School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China;
d Department of Physics, Science College, Changchun University of Science and Technology, Changchun 130022, China
Abstract  An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacid methyl ester (PCBM) bulk-heterojunction organic solar cells. The two devices are fabricated with the solvent vapor drying process followed by a thermal annealing (vapor drying device) and only a normal thermal annealing process (control device), respectively. Their power conversion efficiencies (PCEs) and aging features are compared. Their different degradation behaviors in light absorption are confirmed. In addition, irradiation-induced changes in both nanostructure and surface morphology of the P3HT:PCBM blend films treated with two different fabrication processes are observed through scanning electron microscopy and atomic force microscopy. Aggregated bulbs are observed at the surfaces for control devices after light irradiation for 50 h, while the vapor drying devices exhibit smooth film surfaces, and the corresponding device features are not easy to degrade under the aging measurement. Thus the devices having solvent vapor drying and thermal annealing show better device stabilities than those having only the thermal annealing process.
Keywords:  organic solar cells      photodegradation      solvent vapor drying      stability  
Received:  04 September 2013      Revised:  18 December 2013      Accepted manuscript online: 
PACS:  88.40.jr (Organic photovoltaics)  
  73.43.Fj (Novel experimental methods; measurements)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB932801) and the New Teachers' Fund for Doctor Stations, Ministry of Education, China (Grant No. 20112216120008).
Corresponding Authors:  Jiang Chao     E-mail:

Cite this article: 

Lu Chun-Xi (路春希), Yan Peng (闫鹏), Wang Jin-Ze (王金泽), Liu Ai-Min (刘爱民), Song De (宋德), Jiang Chao (江潮) Photoinduced degradation of organic solar cells with different microstructures 2014 Chin. Phys. B 23 088803

[1] Helgesen M, Sondergaard R and Krebs F C 2010 J. Mater. Chem. 20 36
[2] Dennler G, Scharber M C and Brabec C J 2009 Adv. Mater. 21 1323
[3] Krebs F C, Tromholt T and Jorgensen M 2010 Nanoscale 2 873
[4] Hauch J A, Schilinsky P, Choulis S A, Rajoelson S and Brabec C J 2008 Appl. Phys. Lett. 93 103306
[5] Lin C, Lin E Y and Tsai F Y 2010 Adv. Funct. Mater. 20 834
[6] Bertho S, Janssen G, Cleij T J, Conings B, Moons W, Gadisa A, Haen J D, Goovaerts E, Lutsen L, Manca J and Vanderzande D 2008 Sol. Energy Mater. Sol. Cells 92 753
[7] Conings B, Bertho S, Vandewal K, Senes A, Haen J D, Manca J and Janssen R A J 2010 Appl. Phys. Lett. 96 163301
[8] Manceau M, Rivaton A, Gardette J L, Guillerez S and Lemaître N 2011 Sol. Energy Mater. Sol. Cells 95 1315
[9] Reese M O, Nardes A M, Rupert B L, Larsen R E, Olson D C, Lloyd M T, Shaheen S E, Ginley D S, Rumbles G and Kopidakis N 2010 Adv. Funct. Mater. 20 3476
[10] Tromholt T, Madsen M V, Carlé J E, Helgesen M and Krebs F C 2012 J. Mater. Chem. 22 7592
[11] Bhattacharya J, Mayer R W, Samiee M and Dalal V L 2012 Appl. Phys. Lett. 100 193501
[12] Kawano K and Adachi C 2009 Adv. Funct. Mater. 19 3934
[13] Hoppe H and Sariciftci N S 2006 J. Mater. Chem. 16 45
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!