Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038803    DOI: 10.1088/1674-1056/ac4022
Special Issue: SPECIAL TOPIC — Emerging photovoltaic materials and devices
SPECIAL TOPIC—Emerging photovoltaic materials and devices Prev   Next  

An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells

Gang Li(李刚)1,2, Yuqian Huang(黄玉茜)1,2, Rongfeng Tang(唐荣风)1,2, Bo Che(车波)1,2, Peng Xiao(肖鹏)1,2, Weitao Lian(连伟涛)1,2, Changfei Zhu(朱长飞)1,2, and Tao Chen(陈涛)2,1,†
1 Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China;
2 Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230026, China
Abstract  Carrier separation in a solar cell usually relies on the p—n junction. Here we show that an n—n type inorganic semiconductor heterojunction is also able to separate the exciton for efficient solar cell applications. The n—n type heterojunction was formed by hydrothermal deposition of Sb2(S,Se)3 and thermal evaporation of Sb2Se3. We found that the n—n junction is able to enhance the carrier separation by the formation of an electric field, reduce the interfacial recombination and generate optimized band alignment. The device based on this n—n junction shows 2.89% net efficiency improvement to 7.75% when compared with the device consisted of semiconductor absorber—metal contact. The study in the n—n type solar cell is expected to bring about more versatile materials utility, new interfacial engineering strategy and fundamental findings in the photovoltaic energy conversion process.
Keywords:  n—n junction      carrier separation      solar cell      antimony selenosulfide      thin film  
Received:  10 October 2021      Revised:  24 November 2021      Accepted manuscript online:  05 December 2021
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  78.67.Qa (Nanorods)  
  73.40.-c (Electronic transport in interface structures)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Project supported by Institute of Energy, Hefei Comprehensive National Science Center (Grant No. 21KZS212), the National Key Research and Development Program of China (Grant No. 2019YFA0405600), the National Natural Science Foundation of China (Grant Nos. U19A2092 and 22005293), the China Postdoctoral Science Foundation (Grant No. 2021M693045), and Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences.
Corresponding Authors:  Tao Chen     E-mail:  tchenmse@ustc.edu.cn

Cite this article: 

Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛) An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells 2022 Chin. Phys. B 31 038803

[1] Hovel H J 1975 Solar Cells, Vol. 11 of Semiconductors and Semimetals (New York:Academic Press) p. 2
[2] Green M A 1982 Solar cells:Operating principles, technology and system applications (Englewood Cliffs:Web) p. 2
[3] Granström M, Petritsch K, Arias A, Lux A, Andersson M R and Friend R 1998 Nature 395 257
[4] Metzger W, Ahrenkiel R, Dashdorj J and Friedman D 2005 Phys. Rev. B 71 035301
[5] Würfel U, Cuevas A and Würfel P 2014 IEEE J. Photovolt. 5 461
[6] Hara K O and Usami N 2013 J. Appl. Phys. 114 153101
[7] Kirchartz T, Bisquert J, Mora-Sero I and Garcia-Belmonte G 2015 Phys. Chem. Chem. Phys. 17 4007
[8] Kabir I and Mahmood S A 2019 Chin. Phys. B 28 128801
[9] Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T and Sugimoto H 2019 IEEE J. Photovolt. 9 1863
[10] Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X and Han L 2019 Science 365 687
[11] Metzger W K, Grover S, Lu D, Colegrove E, Moseley J, Perkins C L, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang C S, Kuciauskas D, Albin D S, Al-Jassim M M, Xiong G and Gloeckler M 2019 Nat. Energy 4 837
[12] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energy 2 17032
[13] Peng S, Shi J, Pei, J, Liang Y, Cheng F, Liang J and Chen J 2009 Nano Res. 2 484
[14] Mavlonov A, Razykovb T, Raziqa F, Gana J, Chantanac J, Kawanoc Y, Nishimurad T, Wei H, Zakutayev A, Minemotoc T, Zu X, Li S and Qiao L 2020 Solar Energy 201 227
[15] Mavlonov A, Shukurov A, Raziq F, Mavlonov A, Shukurov A, Raziq F, Wei H, Kuchkarov K, Ergashev B, Razykov T and Qiao L 2020 Solar Energy 208 451
[16] Tang R, Wang X, Lian W, Huang J, Wei Q, Huang M, Yin Y, Jiang C, Yang S, Xing G, Chen S, Zhu C, Hao X, Green M A and Chen T 2020 Nat. Energy 5 587
[17] Chavali R V, De Wolf S and Alam M A 2018 Prog. Photovolt. 26 241
[18] Chavali R V K, Wilcox, J R, Ray B, Gray J L and Alam M A 2014 IEEE J. Photovolt. 4 763
[19] Song Q L, Yang H B, Gan Y, Gong C and Li M C 2010 J. Am. Chem. Soc. 132 4554
[20] Yin X, Guan L, Yu J, Zhao D, Wang C, Shrestha N, Han Y, An Q, Zhou J, Zhou B, Yu Y, Grice C R, Awni R A, Zhang F, Wang J, Ellingson R J, Yan Y and Tang W 2017 Nano Energy 40 163
[21] Duan J, Zhao Y, He B and Tang Q 2018 Angew. Chem. Int. Ed. 130 3849
[22] Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang C, Zhang J, Niu G and Tang J 2018 Nat. Commun. 9 2179
[23] Lian W, Jiang C, Yin Y, Tang R F, Li G, Zhang L, Che B and Chen T 2021 Nat. Commun. 12 3260
[24] Toompuu J, Korolkov O, Sleptšuk N and Rang T 2010 Elektron. Elektrotech. 100 51
[25] Noras J 1981 Solid State Commun. 39 1225
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[3] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[4] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[5] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[6] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[7] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[8] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[9] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[12] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[13] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[14] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[15] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
No Suggested Reading articles found!