Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 038802    DOI: 10.1088/1674-1056/23/3/038802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

MoO3/Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells

Qing Jian (卿健), Zhong Zhen-Feng (钟镇锋), Liu Yong (刘勇), Li Bao-Jun (李宝军), Zhou Xiang (周翔)
State Key Lab of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  We report an MoO3/Ag/Al/ZnO intermediate layer connecting two identical bulk heterojunction subcells with a poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT and PCBM) active layer for inverted tandem polymer solar cells. The highly transparent intermediate layer with an optimized thickness realizes an Ohmic contact between the two subcells for effective charge extraction and recombination. A maximum power conversion efficiency of 3.76% is obtained for the tandem cell under 100 mW/cm2 illumination, which is larger than that of a single cell (3.15%). The open-circuit voltage of the tandem cell (1.18 V) approaches double that of the single cell (0.61 V).
Keywords:  polymer solar cell      inverted structure      tandem solar cell      intermediate layer  
Received:  18 June 2013      Revised:  13 August 2013      Accepted manuscript online: 
PACS:  88.40.jr (Organic photovoltaics)  
  88.40.-j (Solar energy)  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB933704), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20100171110025), and the State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, China (Grant No. 2010-RC-3-1).
Corresponding Authors:  Zhou Xiang     E-mail:  stszx@mail.sysu.edu.cn

Cite this article: 

Qing Jian (卿健), Zhong Zhen-Feng (钟镇锋), Liu Yong (刘勇), Li Bao-Jun (李宝军), Zhou Xiang (周翔) MoO3/Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells 2014 Chin. Phys. B 23 038802

[1] Tang C W 1986 Appl. Phys. Lett. 48 183
[2] Wu J, Guo X Y and Xie Z Y 2012 Chin. Phys. Lett. 29 98801
[3] Liu X D, Zhao S L, Xu Z, Zhang F J, Zhang T H, Gong W, Yan G, Kong C, Wang Y S and Xu X R 2011 Chin. Phys. B 20 68801
[4] Dou L, You J, Yang J, Chen C C, He Y, Murase S, Moriarty T, Emery K, Li G and Yang Y 2012 Nature Photon. 6 180
[5] Feng Z H, Hou Y B, Shi Q M, Liu X J and Teng F 2010 Chin. Phys. B 19 098601
[6] Reyes-Reyes M, Kim K, Dewald J, López-Sandoval R, Avadhanula A, Curran S and Carroll D L 2005 Org. Lett. 7 5749
[7] Ma W, Yang C, Gong X, Lee K and Heeger A J 2005 Adv. Funct. Mater. 15 1617
[8] He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J and Cao Y 2011 Adv. Mater. 23 4636
[9] He Z C, Zhong C M, Su S, Xu M, Wu H B and Cao Y 2012 Nature Photon. 6 593
[10] Yuan Y, Huang J and Li G 2011 Green 1 65
[11] Hadipour A, de Boer B and Blom P W M 2008 Adv. Funct. Mater. 18 169
[12] Ameri T, Dennler G, Lungenschmied C and Brabec C J 2009 Energy Environ. Sci. 2 347
[13] Zhao D, Sun X, Jiang C, Kyaw A, Lo G and Kwong D 2008 Appl. Phys. Lett. 93 083305
[14] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222
[15] Gilot J, Wienk M M and Janssen R A J 2007 Appl. Phys. Lett. 90 143512
[16] Sun X W, Zhao D W, Ke L, Kyaw A K K, Lo G Q and Kwong D L 2010 Appl. Phys. Lett. 97 053303
[17] Chou C H, Kwan W L, Hong Z, Chen L M and Yang Y 2011 Adv. Mater. 23 1282
[18] Kouijzer S, Esiner S, Frijters C H, Turbiez M, Wienk M M and Janssen R A J 2012 Adv. Energy Mater. 2 945
[19] You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C, Gao J and Li G 2013 Nat. Commun. 4 1446
[20] De Jong M, Van Ijzendoorn L and De Voigt M 2000 Appl. Phys. Lett. 77 2255
[21] Krebs F C and Norrman K 2007 Prog. Photovoltaics 15 697
[22] Jorgensen M, Norrman K and Krebs F C 2008 Sol. Energy Mater. Sol. Cells 92 686
[23] Voroshazi E, Verreet B, Aernouts T and Heremans P 2011 Sol. Energy Mater. Sol. Cells 95 1303
[24] Xu Z, Chen L M, Yang G, Huang C H, Hou J, Wu Y, Li G, Hsu C S and Yang Y 2009 Adv. Funct. Mater. 19 1227
[25] White M, Olson D, Shaheen S, Kopidakis N and Ginley D S 2006 Appl. Phys. Lett. 89 143517
[26] Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Choulis S and Brabec C 2006 Appl. Phys. Lett. 89 233517
[27] Hau S K, Yip H L, Baek N S, Zou J, O’Malley K and Jen A K Y 2008 Appl. Phys. Lett. 92 253301
[28] Yang T, Cai W, Qin D, Wang E, Lan L, Gong X, Peng J and Cao Y 2010 J. Phys. Chem. C 114 6849
[29] Sun Y, Seo J H, Takacs C J, Seifter J and Heeger A J 2011 Adv. Mater. 23 1679
[30] Kyaw A, Sun X, Jiang C, Lo G, Zhao D and Kwong D 2008 Appl. Phys. Lett. 93 221107
[31] Gevaerts V S, Furlan A, Wienk M M, Turbiez M and Janssen R A J 2012 Adv. Mater. 24 2130
[32] Beek W J E, Wienk M M, Kemerink M and Yang X 2005 J. Phys. Chem. B 109 9505
[33] Zhao D, Liu P, Sun X, Tan S, Ke L and Kyaw A 2009 Appl. Phys. Lett. 95 153304
[34] Sista S, Park M H, Hong Z, Wu Y, Hou J, Kwan W L, Li G and Yang Y 2009 Adv. Mater. 22 380
[35] Chen F C and Lin C H 2009 J. Phys. D 43 025104
[36] Kim S S, Na S I, Jo J, Kim D Y and Nah Y C 2008 Appl. Phys. Lett. 93 073307
[37] Hau S K, Yip H L, Chen K S, Zou J and Jen A K Y 2010 Appl. Phys. Lett. 97 253307
[38] Kumar A, Sista S and Yang Y 2009 J. Appl. Phys. 105 094512
[1] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[2] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[3] Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells
Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇). Chin. Phys. B, 2018, 27(7): 078802.
[4] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[5] Fullerene solar cells with cholesteric liquid crystal doping
Lulu Jiang(姜璐璐), Yurong Jiang(蒋玉荣), Congcong Zhang(张丛丛), Zezhang Chen(陈泽章), Ruiping Qin(秦瑞平), Heng Ma(马恒). Chin. Phys. B, 2016, 25(9): 098401.
[6] Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells
Tong-Fang Liu(刘统方), Yu-Feng Hu(胡煜峰), Zhen-Bo Deng(邓振波), Xiong Li(李熊), Li-Jie Zhu(朱丽杰), Yue Wang(王越), Long-Feng Lv(吕龙锋), Tie-Ning Wang(王铁宁), Zhi-Dong Lou(娄志东), Yan-Bing Hou(侯延冰), Feng Teng(滕枫). Chin. Phys. B, 2016, 25(8): 088801.
[7] Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Hamed Fatehy. Chin. Phys. B, 2016, 25(4): 047201.
[8] Microstructure and lateral conductivity control of hydrogenated nanocrystalline silicon oxide and its application in a-Si:H/a-SiGe:H tandem solar cells
Tian-Tian Li(李天天), Tie Yang(杨铁), Jia Fang(方家), De-Kun Zhang(张德坤), Jian Sun(孙建), Chang-Chun Wei(魏长春), Sheng-Zhi Xu(许盛之), Guang-Cai Wang(王广才), Cai-Chi Liu(刘彩池), Ying Zhao(赵颖), Xiao-Dan Zhang(张晓丹). Chin. Phys. B, 2016, 25(4): 046101.
[9] Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers
Taohong Wang(王桃红), Changbo Chen(陈长博), Kunping Guo(郭坤平), Guo Chen(陈果), Tao Xu(徐韬), Bin Wei(魏斌). Chin. Phys. B, 2016, 25(3): 038402.
[10] Nano structure evolution in P3HT:PC61BM blend films due to the effects of thermal annealing or by adding solvent
Fan Xing (樊星), Zhao Su-Ling (赵谡玲), Chen Yu (陈雨), Zhang Jie (张杰), Yang Qian-Qian (杨倩倩), Gong Wei (龚伟), Yuan Meng-Yao (苑梦尧), Xu Zheng (徐征), Xu Xu-Rong (徐叙瑢). Chin. Phys. B, 2015, 24(7): 078401.
[11] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[12] Photoactive area modification in bulk heterojunctionorganic solar cells using optimization of electrochemicallysynthesized ZnO nanorods
Mehdi Ahmadi, Sajjad Rashidi Dafeh. Chin. Phys. B, 2015, 24(11): 117203.
[13] GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE
Zheng Xin-He (郑新和), Liu San-Jie (刘三姐), Xia Yu (夏宇), Gan Xing-Yuan (甘兴源), Wang Hai-Xiao (王海啸), Wang Nai-Ming (王乃明), Yang Hui (杨辉). Chin. Phys. B, 2015, 24(10): 108802.
[14] Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen
Zhuo Zu-Liang (卓祖亮), Wang Yong-Sheng (王永生), He Da-Wei (何大伟), Fu Ming (富鸣). Chin. Phys. B, 2014, 23(9): 098802.
[15] Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction
Liu Yu-Xuan (刘宇譞), Lü Long-Feng (吕龙峰), Ning Yu (宁宇), Lu Yun-Zhang (陆运章), Lu Qi-Peng (鲁启鹏), Zhang Chun-Mei (张春梅), Fang Yi (方一), Tang Ai-Wei (唐爱伟), Hu Yu-Feng (胡煜峰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Hou Yan-Bing (侯延冰). Chin. Phys. B, 2014, 23(11): 118802.
No Suggested Reading articles found!