Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024103    DOI: 10.1088/1674-1056/ac422f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Determine the physical mechanism and source region of beat wave modulation by changing the frequency of high-frequency waves

Zhe Guo(郭哲)1, Hanxian Fang(方涵先)1,†, and Farideh Honary2
1 College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China;
2 Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
Abstract  This paper introduces a new approach for the determination of the source region of beat wave (BW) modulation. This type of modulation is achieved by transmitting high-frequency (HF) continuous waves with a frequency difference f, where f is the frequency of modulated ELF/VLF (extremely low frequency/very low frequency) waves from two sub-arrays of a high power HF transmitter. Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency, there exists a controversy on the physical mechanism of BW and its source region. In this paper, the two controversial theories, i.e., BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously. According to the analysis and simulation results presented in this paper, it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions. Therefore, this characteristic can be utilized as a potential new approach to determine the physical mechanism and source location of BW.
Keywords:  powerful HF waves      ionospheric modulated heating      beat wave modulation      ELF/VLF waves  
Received:  08 September 2021      Revised:  03 December 2021      Accepted manuscript online:  11 December 2021
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  94.20.Bb (Wave propagation)  
  94.05.Pt (Wave/wave, wave/particle interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41804149) and China Scholarship Council.
Corresponding Authors:  Hanxian Fang     E-mail:  fanghx@hit.edu.cn

Cite this article: 

Zhe Guo(郭哲), Hanxian Fang(方涵先), and Farideh Honary Determine the physical mechanism and source region of beat wave modulation by changing the frequency of high-frequency waves 2022 Chin. Phys. B 31 024103

[1] Chang S S 2014 Propagation of ELF/VLF waves excited by ionospheric modulation and the resonant interaction with energetic electrons in the magnetosphere (Ph.D. dissertation) (Wuhan:Wuhan University) (in Chinese)
[2] Chang S S, Zhu Z P, Ni B B, Cao X and Luo W H 2016 Adv. Space Res. 58 1219
[3] Willis J W and Davis J R 1973 J. Geophys. Res. 78 5710
[4] Getmantsev G G, Zuikov N A, Kotik D S, Mironenko L F, Mitiakov N A, Rapoport V O, Sazonov I A, Trakhtengerts V I and Eidman V I 1974 Sov. Phys. JETP, Engl. Transl. 20 229
[5] Papadopoulos K, Sharma A S and Chang C L 1989 Comments Plasma Phys. Controlled Fusion 13 1
[6] Cohen M B, Inan U S and Golkowski M A 2008 Geophys. Res. Lett. 35 L12101
[7] Milikh G M and Papadopoulos K 2007 Geophys. Res. Lett. 34 L20804
[8] Moore R C and Agrawal D 2011 J. Geophys. Res. Space Phys. 116 L04217
[9] Kotik D S and Ermakova E N 1998 J. Atmos. Solar-Terr. Phys. 60 1257
[10] Papadopoulos K, Chang C L, Labenski J and Wallace T 2011 Geophys. Res. Lett. 38 L20107
[11] Vartanyan A, Milikh G M, Eliasson B, Najmi A C, Parrot M and Papadopoulos K 2016 Radio Sci. 51 1188
[12] Barr R and Stubbe P 1997 J. Atmos. Solar-Terr. Phys. 59 2265
[13] Kuo S, Snyder A, Kossey P, Chang C L and Labenski J 2011 Geophys. Res. Lett. 38 L10608
[14] Villaseñor J, Wong A Y, Song B, Pau J, McCarrick M and Sentman D 1996 Radio Sci. 31 211
[15] Kuo S P, Lee M C, Kossey P, Groves K and Heckscher J 2000 Geophys. Res. Lett. 27 85
[16] Kuo S, Snyder A, Kossey P, Chang C L and Labenski J 2012 J. Geophys. Res. Space Phys. 117 A03318
[17] Cohen M B, Moore R C, Golkowski M and Lehtinen N G 2012 J. Geophys. Res. Space Phys. 117 A12310
[18] Jin G, Spasojevic M, Cohen M B, Inan U S and Lehtinen N G 2011 J. Geophys. Res. 116 A07310
[19] Moore R C, Fujimaru S, Cohen M, Gołkowski M and McCarrick M J 2012 Geophys. Res. Lett. 39 L18101
[20] Tereshchenko E D, Shumilov O I, Kasatkina E A and Gomonov A D 2014 Geophys. Res. Lett. 41 4442
[21] Li H Y, Zhan J, Wu Z S and Kong P 2016 Prog. Electromagn. Res. M 50 55
[22] Xu T, Rietveld M, Wu J, Ma G, Hu Y, Wu J and Li Q 2019 J. Atmos. Solar-Terr. Phys. 196 105133
[23] Ma G, Guo L, Yang J, Lv L, Chen J, Xu T, Hao S and Wu J 2019 Adv. Space Res. 63 2126
[24] Kuo S, Cheng W T, Pradipta R, Lee M C and Snyder A 2013 J. Geophys. Res. Space Phys. 118 1331
[25] Rooker L A, Lee M C, Pradipta R and Watkins B J 2013 Alaska. Phys. Scr. T155 014029
[26] Yang J, Li Q, Wang J, Hao S and Ma G 2018 Phys. Plasmas 25 092902
[27] Yang J, Wang J, Li Q, Wu J, Che H, Ma G and Hao S 2019 Phys. Plasmas 26 082901
[28] Kuo S P and Lee M C 2017 Phys. Plasmas 24 022902
[29] Cohen M B, Golkowski M, Lehtinen N G, Inan U S and McCarrick M J 2012 J. Geophys. Res. Space Phys. 117 A05327
[30] Rietveld M, Kopka H and Stubbe P 1986 J. Atmos. Solar-Terr. Phys. 48 311
[31] Stubbe P and Varnum W S 1972 Planet. Space Sci. 20 1121
[32] Pashin A B, Belova E G and Lyatsky W B 1995 J. Atmos. Solar-Terr. Phys. 57 245
[33] Ferraro A J, Lee H S, Allshouse R, Carroll K, Tomko A A, kelly F J and Joiner R G 1982 J. Atmos. Solar-Terr. Phys. 44 1113
[34] Guo Z, Fang H and Honary F 2021 Universe 7 43
[35] Villaseñor J, Wong A Y, Song B, Pau J, McCarrick M and Sentman D 1996 Radio Sci. 31 211
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[6] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[7] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[8] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[9] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[10] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[11] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[14] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!