Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024211    DOI: 10.1088/1674-1056/ac1fdd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A novel polarization converter based on the band-stop frequency selective surface

Kun Liao(廖昆)1, Shining Sun(孙世宁)2, Xinyuan Zheng(郑昕原)1, Xianxian Shao(邵纤纤)3, Xiangkun Kong(孔祥鲲)1, and Shaobin Liu(刘少斌)1,†
1 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2 Aviation Key Laboratory of Science and Technology on High Performance Electromagnetic Windows, Jinan 250023, China;
3 Pingxiang Health Vocational College, Pingxiang 337006, China
Abstract  A dual-passband single-polarized converter based on the band-stop frequency selective surface (FSS) with a low radar cross-section (RCS) is designed in this article. The unit cell of the proposed converter is formed by a polarization layer attached to the band-stop frequency selective surface. The simulation results reveal that the co-polarization reflection coefficients below -10 dB are achieved in 3.82-13.64 GHz with a 112.4% fractional bandwidth (the ratio of the signal bandwidth to the central frequency). Meanwhile, a polarization conversion band is realized from 8.14 GHz to 9.27 GHz with a polarization conversion ratio which is over 80%. Moreover, the 1 dB transmission window is obtained in two non-adjacent bands of 3.42-7.02 GHz and 10.04-13.91 GHz corresponding to the relative bandwidths of 68.9% and 32.3%, respectively. Furthermore, the radar cross-section of the designed structure can be reduced in the wideband from 2.28 GHz to 14 GHz, and the 10 dB RCS reduction in the range of 4.10-13.35 GHz is achieved. In addition, the equivalent circuit model of this converter is established, and the simulation results of the Advanced Design System (ADS) match well with those of CST Microwave Studio (CST). The archetype of the designed converter is manufactured and measured. The experiment results match the simulation results well, which proves the reliability of the simulation results.
Keywords:  dual-passband single-polarized converter      polarization      radar cross-section (RCS)  
Received:  04 July 2021      Revised:  14 August 2021      Accepted manuscript online:  22 August 2021
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071221 and 62071442) and in part by Equipment Advanced Research Foundation (Grant No. 80909010302).
Corresponding Authors:  Shaobin Liu     E-mail:  lsb@nuaa.edu.cn

Cite this article: 

Kun Liao(廖昆), Shining Sun(孙世宁), Xinyuan Zheng(郑昕原), Xianxian Shao(邵纤纤), Xiangkun Kong(孔祥鲲), and Shaobin Liu(刘少斌) A novel polarization converter based on the band-stop frequency selective surface 2022 Chin. Phys. B 31 024211

[1] Durden S and Ves Ec Ky J 1985 IEEE Journal of Oceanic Engineering 10 445
[2] Chen H, Hou X and Deng L 2009 IEEE Antennas Wireless Propagation Lett. 8 1231
[3] Liang B Y and Ming B 2016 Opt. Express 24 14697
[4] Al-Joumayly M and Behdad N 2009 IEEE Trans. Antennas Propag. 57 452
[5] Han Y, Zhu L, Chang Y and Li B 2018 IEEE Trans. Antennas Propag. 66 7449
[6] Motevasselian A and Jonsson B L G 2012 IET Microwaves Antennas Propag. 6 747
[7] Shang Y P, Shen Z X and Xiao S Q 2014 IEEE Trans. Antennas Propag. 62 5581
[8] Li B and Shen Z X 2014 IEEE Trans. Antennas Propag. 62 6536
[9] Chen Q, D Sang, Guo M and Fu Y Q 2018 IEEE Trans. Antennas Propag. 66 4105
[10] Costa F and Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740
[11] Yu Y F, Luo G Q, Omar A A, Liu X, Yu W L, Hao Z C and Shen Z X 2018 IEEE Access 6 72880
[12] Yu W L, Luo G Q, Yu Y F, Liao Z, Jin H and Shen Z X 2019 IEEE Antennas Wireless Propagation Lett. 18 1701
[13] Ji C, Huang C, Zhang X, Yang J N, Song J K and Luo X G 2019 Opt. Express 27 23368
[14] Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T and Feng Y J 2016 Opt. Express 24 27849
[15] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 Appl. Phys. Lett. 104 073901
[16] Li Q, Pang Y Q, Li Y F, Yan M B, Wang J F, Xu Z and Qu S B 2014 J. Appl. Phys. 124 065107
[17] Wang Y, Chen K, Li Y and Cao Q S 2021 IEEE Antennas Wireless Propagation Lett. 20 346
[18] Long M, Jiang W and Gong S X 2017 IEEE Antennas Wireless Propagation Lett. 16 2534
[19] Liu Y, Li K, Jia Y T, Hao Y, Gong S X and Guo Y J 2015 IEEE Trans. Antennas Propag. 64 326
[20] Wang Q, Kong X K, Yan X X, Xu Y, Liu S B, Mo J J and Liu X C 2019 Chin. Phys. B 28 074205
[21] Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B and Li Y F 2014 J. Appl. Phys. 115 154504
[22] Wu J L, Lin B Q, Da X Y and Wu K 2017 Chin. Phys. B 26 094201
[23] Wang L L, Liu S B, Kong X K, Zhang H F, Yu Q M, Wen Y D and Wang D D 2020 IEEE Trans. Antennas Propag. 69 2833
[24] Perez-Palomino G, Page J E, Arrebola M and Encinar J A 2018 IEEE Trans. Antennas Propag. 99 2428
[25] Ferreira D, Caldeirinha R F S, Cuiñas I and Fernandes T R 2015 IEEE Trans. Antennas Propag. 63 3947
[26] Jia Y T, Liu, Y, Guo Y J, Li K and Gong S X 2017 IEEE Trans. Antennas Propag. 65 3291
[27] Li Y, Cao Q and Wang Y 2018 International Journal of Rf & Microwave Computer Aided Engineering 28 21457
[28] Kim S and Yoon Y J 2019 IEEE Antennas and Wireless Propagation Lett. 18 896
[29] Modi A Y, Balanis C A, Birtcher C R and Shaman H N 2017 IEEE Trans. Antennas Propag. 65 5406
[30] Yuan F, Xu H X, Jia X Q, Wang G M and Fu Y Q 2019 IEEE Trans. Antennas Propag. 68 2463
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[7] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
No Suggested Reading articles found!