Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017103    DOI: 10.1088/1674-1056/ac3505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Defect calculations with quasiparticle correction: A revisited study of iodine defects in CH3NH3PbI3

Ling Li(李玲)1 and Wan-Jian Yin(尹万健)1,2,3,†
1 College of Energy, Soochow Institute for Energy and Materials Innovations(SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China;
2 Light Industry Institute of Electrochemical Power Sources, Soochow University, Suzhou 215006, China;
3 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Laboratory of Modern Optical Technologies of the Education Ministry of China, Soochow University, Suzhou 215006, China
Abstract  Defect levels in semiconductor band gaps play a crucial role in functionalized semiconductors for practical applications in optoelectronics; however, first-principle defect calculations based on exchange-correlation functionals, such as local density approximation, grand gradient approximation (GGA), and hybrid functionals, either underestimate band gaps or misplace defect levels. In this study, we revisited iodine defects in CH3NH3PbI3 by combining the accuracy of total energy calculations of GGA and single-electron level calculation of the GW method. The combined approach predicted neutral Im i to be unstable and the transition level of Im i(+1/-1) to be close to the valence band maximum. Therefore, Im i may not be as detrimental as previously reported. Moreover, Vm I may be unstable in the -1 charged state but could still be detrimental owing to the deep transition level of Vm I(+1/0). These results could facilitate the further understanding of the intrinsic point defect and defect passivation observed in CH3NH3PbI3.
Keywords:  quasiparticle correction      defect calculation      GW theory      methylammonium lead iodide  
Received:  23 August 2021      Revised:  14 October 2021      Accepted manuscript online:  01 November 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.Bb (Theories and models of crystal defects)  
  31.15.xm (Quasiparticle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974257), the Distinguished Young Talent Funding of Jiangsu Province, China (Grant No. BK20200003), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). DFT calculations were carried out at the National Supercomputer Center in Tianjin [TianHe-1(A)].
Corresponding Authors:  Wan-Jian Yin     E-mail:  wjyin@suda.edu.cn

Cite this article: 

Ling Li(李玲) and Wan-Jian Yin(尹万健) Defect calculations with quasiparticle correction: A revisited study of iodine defects in CH3NH3PbI3 2022 Chin. Phys. B 31 017103

[1] Buin A, Comin R, Xu J, Ip A H and Sargent E H 2015 Chem. Mater. 27 4405
[2] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A and Van De Walle C G 2014 Rev. Mod. Phys. 86 253
[3] Kang J and Wang L W 2017 J. Phys. Chem. Lett. 8 489
[4] Komsa H P, Broqvist P and Pasquarello A 2010 Phys. Rev. B 81 205118
[5] Oba F, Togo A, Tanaka I, Paier J and Kresse G 2008 Phys. Rev. B 77 245202
[6] Hashibon A and Elsässer C 2011 Phys. Rev. B 84 144117
[7] Stampfl C, Van de Walle C, Vogel D, Krüger P and Pollmann J 2000 Phys. Rev. B 61 R7846
[8] Sun J, Remsing R C, Zhang Y, Sun Z, Ruzsinszky A, Peng H, Yang Z, Paul A, Waghmare U, Wu X, Klein M L and Perdew J P 2016 Nat. Chem. 8 831
[9] Yin W J J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903
[10] Wang J, Li W and Yin W 2020 Adv. Mater. 32 1906115
[11] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[12] Hua X, Chen X and Goddard W A 1997 Phys. Rev. B 55 16103
[13] Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A and Ceder G 2011 Phys. Rev. B 84 045115
[14] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[15] Lany S and Zunger A 2008 Phys. Rev. B 78 235104
[16] Du M H 2014 J. Mater. Chem. A 2 9091
[17] Kümmel S and Kronik L 2008 Rev. Mod. Phys. 80 3
[18] Schonhammer K and Gunnarsson O 1987 J. Phys. C: Solid State Phys. 20 3675
[19] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[20] Paier J, Marsman M and Kresse G 2007 J. Chem. Phys. 127 024103
[21] Chen W and Pasquarello A 2015 J. Phys.: Condens. Matter 27 133202
[22] Aryasetiawan F and Gunnarsson O 1998 Rep. Prog. Phys. 61 237
[23] Yan Y and Wei S H 2008 Phys. Status Solidi Basic Res. 245 641
[24] Holm B 1999 Phys. Rev. Lett. 83 788
[25] Rinke P, Janotti A, Scheffler M and Van de Walle C G 2009 Phys. Rev. Lett. 102 026402
[26] Ball J M and Petrozza A 2016 Nat. Energy 1 16149
[27] Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A and De Angelis F 2018 Energy Environ. Sci. 11 702
[28] Du M H 2015 J. Phys. Chem. Lett. 6 1461
[29] Zhang X, Turiansky M E, Shen J X and Van De Walle C G 2020 Phys. Rev. B 101 140101
[30] Agiorgousis M L, Sun Y Y Y, Zeng H and Zhang S 2014 J. Am. Chem. Soc. 136 14570
[31] Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R and Sargent E H 2014 Nano Lett. 14 6281
[32] Keeble D J, Wiktor J, Pathak S K, Phillips L J, Dickmann M, Durose K, Snaith H J and Egger W 2021 Nat. Commun. 12 5566
[33] Even J, Pedesseau L, Jancu J M and Katan C 2013 J. Phys. Chem. Lett. 4 2999
[34] Leguy A M A, Azarhoosh P, Alonso M I, Campoy-Quiles M, Weber O J, Yao J, Bryant D, Weller M T, Nelson J, Walsh A, Van Schilfgaarde M and Barnes P R F 2016 Nanoscale 8 6317
[35] Berding M A 1999 Phys. Rev. B 60 8943
[36] Mattila T and Nieminen R 1996 Phys. Rev. B 54 16676
[37] Ambrosio F, Mosconi E, Alasmari A A, Alasmary F A S, Meggiolaro D and De Angelis F 2020 Chem. Mater. 32 6916
[38] Kye Y H, Yu C J, Jong U G G, Chen Y and Walsh A 2018 J. Phys. Chem. Lett. 9 2196
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[7] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[8] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[9] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[10] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[11] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[14] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[15] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
No Suggested Reading articles found!