Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048103    DOI: 10.1088/1674-1056/ac3a61
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films

Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军)
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  Stoichiometric and silicon-rich (Si-rich) SiC films were deposited by microwave electron cyclotron resonance (MW-ECR) plasma enhanced RF magnetron sputtering method. As-deposited films were oxidized at 800 ℃, 900 ℃, and 1000 ℃ in air for 60 min. The chemical composition and structure of the films were analyzed by x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The surface morphology of the films before and after the high temperature oxidation was measured by atomic force microscopy. The mechanical property of the films was measured by a nano-indenter. The anti-oxidation temperature of the Si-rich SiC film is 100 ℃ higher than that of the stoichiometric SiC film. The oxidation layer thickness of the Si-rich SiC film is thinner than that of the stoichiometric SiC film in depth direction. The large amount of extra silicon in the Si-rich SiC film plays an important role in the improvement of its high temperature anti-oxidation property.
Keywords:  SiC      anti-oxidation      silicon-rich      sputtering  
Received:  17 September 2021      Revised:  31 October 2021      Accepted manuscript online:  17 November 2021
PACS:  81.15.Cd (Deposition by sputtering)  
  68.60.Dv (Thermal stability; thermal effects)  
Corresponding Authors:  Jun Xu     E-mail:  xujun@dlut.edu.cn

Cite this article: 

Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军) Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films 2022 Chin. Phys. B 31 048103

[1] Xu M, Girish Y R, Rakesh K P, Wu P, Manukumar H M, Byrappa S M, Udayabhanu and Byrappa K 2021 Mater. Today Commun. 28 102533
[2] Liu P, Hao J L, Wang S K, You N N, Hu Q Y, Zhang Q, Bai Y and Liu X Y 2021 Chin. Phys. B 30 077303
[3] He R, Zhou N, Zhang K, Zhang X, Zhang L, Wang W and Fang D 2021 J. Adv. Ceram. 10 637
[4] Ning K and Lu K 2018 J. Am. Ceram. Soc. 101 3662
[5] Huang L, Zhu J, Ma Y, Liang T, Lei C, Li Y and Gu X 2021 Acta Phys. Sin. 70 207302 (in Chinese)
[6] Liu H, Li J and Li B 2018 Chin. Phys. Lett. 35 096103
[7] Xu Y, Diao H, Zhang S, Li X, Zeng X, Wang W and Liao X 2007 Acta Phys. Sin. 56 2915 (in Chinese)
[8] Bu A, Zhang Y, Zhang Y, Chen W, Cheng H, Wang L and Wang Y 2018 Coatings 8 344
[9] Qiang X, Li H, Zhang N, Liu Y and Tian S 2018 Int. J. Appl. Ceram. Technol. 15 1100
[10] Arce R, Koropecki R R, Buitrago R H, Alvarez F and Chambouleyron I 1989 J. Appl. Phys. 66 4544
[11] Choi W K, Lee L P, Foo S L, Gangadharan S, Chong N B anf Tan L S 2001 J. Appl. Phys. 89 1942
[12] Vasin A V, Muto S, Ishikawa Y, Rusavsky A V, Kimura T, Lysenko V S and Nazarov A N 2011 Thin Solid Films 519 2218
[13] Jiang Y, Ru H, Ye C, Wang W, Zhang C and Su X 2018 Ceram. Int. 44 17369
[14] Wang H, Zhang L, Lu W and Xu J 2020 Plasma Sci. Technol. 22 034010
[15] Zhang Z, Liu T, Xu J, Deng X and Dong C 2006 Surf. Coat. Technol. 200 4918
[16] Xu J, Deng X, Zhang J, Lu W and Ma T 2001 Thin Solid Films 390 107
[17] Choi W K, Ong T Y, Tan L S, Loh F C and Tan K L 1998 J. Appl. Phys. 83 4968
[18] Lin H, Gerbec J A, Sushchikh M and Mcfarland E W 2008 Nanotechnology 19 325601
[19] Cheng C H, Wu C L, Lin Y H, Yan W L, Shih M H, Chang J H, Wu C I, Lee C K and Lin G R 2015 J. Mater. Chem. C 3 10164
[20] Masuda T, Iwasaka A, Takagishi H and Shimoda T 2016 J. Am. Ceram. Soc. 99 1651
[21] Kamble M, Waman V, Mayabadi A, Funde A, Sathe V, Shripathi T, Pathan H and Jadkar S 2017 Silicon 9 421
[22] Khatami Z, Wilson P R J, Wojcik J and Mascher P 2017 Thin Solid Films 622 1
[23] Ramos-Serrano J R, Matsumoto Y, Méndez-Blas A, Dutt A, Morales C and Oliva A I 2019 J. Alloys Compd. 780 341
[24] Awad Y, Khakani M A EI, Aktik C, Mouine J, Camiré N, Lessard M, Scarlete M, Al-Abadleh H A and Smirani R 2009 Surf. Coat. Technol. 204 539
[25] Wang L 2011 J. Non-Cryst. Solids 357 1063
[26] Jedrzejowski P, Cizek J, Amassian A, Klemberg-Sapieha J E, Vlcek J and Martinu L 2004 Thin Solid Films 447 201
[27] Khalfi A EI, Ech-chamikh E, Ijdiyaou Y, Azizan M, Essafti A, Nkhaili L, El Kissani A and Tomasella E 2017 Vib. Spectrosc. 89 44
[28] Opila E J 1994 J. Am. Ceram. Soc. 77 730
[29] Pöhlmann K, Bhushan B and Gahr K H Z 2000 Wear 237 116
[30] Khakani M E, Chaker M, O'Hern M E and Oliver W C 1997 J. Appl. Phys. 82 4310
[31] Saha R, Xue Z, Huang Y and Nix W D 2001 J. Mech. Phys. Solids 49 1997
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[7] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[10] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[11] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[12] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[13] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[14] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[15] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
No Suggested Reading articles found!