Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010308    DOI: 10.1088/1674-1056/27/1/010308
GENERAL Prev   Next  

Transitionless driving on local adiabatic quantum search algorithm

Feng-guang Li(李风光)1,2, Wan-su Bao(鲍皖苏)1,2, Shuo Zhang(张硕)1,2, Xiang Wang(汪翔)1,2, He-liang Huang(黄合良)1,2, Tan Li(李坦)1,2, Bo-wen Ma(马博文)1,2
1 Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transitionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term HD ≤ ft(t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schrödinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of O ≤ ft(√N).
Keywords:  transitionless driving      local adiabatic quantum search algorithm  
Received:  31 August 2017      Revised:  28 September 2017      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11504430 and 61502526).
Corresponding Authors:  Wan-su Bao     E-mail:  2010thzz@sina.com

Cite this article: 

Feng-guang Li(李风光), Wan-su Bao(鲍皖苏), Shuo Zhang(张硕), Xiang Wang(汪翔), He-liang Huang(黄合良), Tan Li(李坦), Bo-wen Ma(马博文) Transitionless driving on local adiabatic quantum search algorithm 2018 Chin. Phys. B 27 010308

[1] Grover L K 1997 Phys. Rev. Lett. 79 325
[2] Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 arXiv: quant-ph/9701001
[3] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[4] Mizel A, Lidar D A and Mitchell M 2007 Phys. Rev. Lett. 99 070502
[5] Zhang Y Y, Hu H P and Lu S F 2011 Chin. Phys. B 20 040309
[6] Zhang L 2015 Chin. Phys. B 24 117202
[7] Li X K and Feng W 2017 Acta Phys. Sin. 66 153101 (in Chinese)
[8] Qin J X, Katsnelson B, Peng Z H, Li Z L, Zhang R H and Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese)
[9] Farhi E, Goldstone J, Gutmann S and Siper M 2000 arXiv:quant-ph/0001106v1
[10] Roland J and Cerf N J 2002 Phys. Rev. A 65 042308
[11] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
[12] Delcampo A 2013 Phys. Rev. Lett. 111 100502
[13] Torrontegui E, Ibáñez S, Martínez-Garaot S, Modugno M, Delcampo A, Gué-Odelin D, Ruschhaupt A, Chen X and Muga J G 2013 Adv. At. Mol. Opt. Phys. 62 117
[14] Chen Y H, Xia Y, Wu Q C, Huang B H and Song J 2016 Phys. Rev. A 93 052109
[15] Demirplak M and Rice S A 2003 J. Phys. Chem. A 107 9937
[16] Demirplak M and Rice S A 2008 J. Chem. Phys. 129 154111
[17] Berry M B 2009 J. Phys. A 42 365303
[18] Sangchul O and Sabre K 2014 J. Chem. Phys. 141 224108
[19] Born M and Fock V 1928 Z. Phys. 51 165
[20] Das S, Kobes R and Kunstatter G 2003 J. Phys. A 36 2839
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[4] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[5] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[8] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[9] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[10] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[11] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[12] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[13] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[14] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[15] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
No Suggested Reading articles found!