|
|
Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs |
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英)† |
Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We study the dynamics of geometric quantum discord (GQD) between two qubits, each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature. In both weak and strong qubit-reservoirs coupling regimes, we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD, and enhance the memory effects of the overall environment. And the Hilbert-Schmidt norm GQD (two-norm GQD) is always smaller than the trace norm geometric quantum discord (one-norm GQD). Therefore, the one-norm GQD is a better way to measure the quantum correlation. Finally, we propose an effective strategy to improve GQD by using partially collapsing measurements, and we find that the protection effect is better with the increase of the weak measurement strength.
|
Received: 28 December 2021
Revised: 25 January 2022
Accepted manuscript online: 27 January 2022
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11772177). |
Corresponding Authors:
Su-Ying Zhang
E-mail: zhangsy@sxu.edu.cn
|
Cite this article:
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英) Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs 2022 Chin. Phys. B 31 040308
|
[1] Ekert A and Jozsa R 1996 Rev. Mod. Phys. 68 733 [2] Gottesman D and Chuang I L 1999 Nature 402 390 [3] Bennett C H and DiVincenzo D P 2000 Nature 404 247 [4] Takita M, Cross A W, Corcoles A D, Chow J M and Gambetta J M 2017 Phys. Rev. Lett. 119 180501 [5] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [6] Ekert A K 1991 Phys. Rev. Lett. 67 661 [7] Dan K, Mor T and Ratsaby G 2012 Quantum Inf. Comput. 6 606 [8] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [9] Datta A 2009 Phys. Rev. A 80 052304 [10] Li J Q and Liang J Q 2011 Phys. Lett. A 375 1496 [11] Zeng S P, Shi H L, Zhou X, Wang X H, Liu S Y and Hu M L 2019 Sci. Rep. 9 1083 [12] Kon W Y, Krisnanda T, Sengupta P and Paterek T 2019 Phys. Rev. B 100 235103 [13] Meher N, Patoary A S M, Kulkarni G and Jha A K 2020 J. Opt. Soc. Am B 37 1224 [14] Virzí S, Rebufello E, Avella A, Piacentini F, Gramegna M, Berchera I R, Degiovanni I P and Genovese M 2019 Sci. Rep. 9 3030 [15] Chen M C, Zhong H S, Li Y, Wu D, Wang X L, Li L, Liu N L, Lu, C Y and Pan J W 2019 Sci. Bull. 64 580 [16] Cao W, Lu X, Meng X, Sun J, Shen H and Xiao Y 2020 Phys. Rev. Lett. 124 030401 [17] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502 [18] Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502 [19] Dakić B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner C and Walther P 2012 Nat. Phys. 8 666 [20] Brodutch A and Terno D R 2010 Phys. Rev. A 81 062103 [21] De Chiara G and Sanpera A 2018 Rep. Prog. Phys. 81 074002 [22] Luo S 2008 Phys. Rev. A 77 42303 [23] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 82 [24] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672 [25] Horodecki M, Horodecki P and Horodecki R 2005 Phys. Rev. A 71 062307 [26] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401 [27] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502 [28] Luo S 2008 Phys. Rev. A 77 042303 [29] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109 [30] Hu X, Fan H, Zhou D L and Liu W M 2013 Phys. Rev. A 87 032340 [31] Tufarelli T, Girolami D, Vasile R, Bose S and Adesso G 2012 Phys. Rev. A 86 052326 [32] Piani M 2012 Phys. Rev. A 86 034101 [33] Paula F M, Oliveira T R D and Sarandy M S 2013 Phys. Rev. A 87 064101 [34] Mohamed A B A 2012 Ann. Phys. 327 3130 [35] Zhang G F, Ji A L, Fan H and Liu W M 2012 Ann. Phys. 327 2074 [36] Zhang G F, Fan H, Ji A L and Liu W M 2012 Eur. Phys. J. D 66 34 [37] Ramzan M 2013 Quantum Inf. Process. 12 2721 [38] Hu M L and Lian H L 2015 Ann. Phys. 362 795 [39] Bai X M, Wang N, Li J Q and Liang J Q 2016 Quantum Inf. Process. 15 2771 [40] Mohamed A B A and Metwally N 2019 Quantum Inf. Process. 18 79 [41] Orthey Jr A C and Angelo R M 2019 Phys. Rev. A 100 042110 [42] Bemani F, Roknizadeh R, Motazedifard A, Naderi M H and Vitali D 2019 Phys. Rev. A 99 063814 [43] Kenfack L T, Tchoffo M, Javed M and Fai L C 2020 Quantum Inf. Process. 19 107 [44] Mohamed A B A, Hessian H A and Eleuch H 2020 Chaos Soliton Fract. 135 109773 [45] Vimal V K and Subrahmanyam V 2020 Phys. Rev. A 102 012406 [46] Ban M 2020 Quantum Inf. Process 19 46 [47] Pourkarimi M R and Haddadi S 2020 Laser Phys. Lett. 17 025206 [48] Li X X, Yin H D, Li D X and Shao X Q 2020 Phys. Rev. A 101 012329 [49] Apollaro T J G, Lorenzo S, DiFranco C, Plastina F and Paternostro M 2014 Phys. Rev. A 90 012310 [50] Chan C K, Lin G D, Yelin S F and Lukin M D 2014 Phys. Rev. A 89 042117 [51] Hanson R, Dobrovitski V V, Feiguin A E, Gywat O and Awschalom D D 2008 Science 320 352 [52] Altintas F 2010 Opt. Commun 283 5264 [53] Montealegre J D, Paula F M, Saguia A and Sarandy M S 2013 Phys. Rev. A 87 042115 [54] Nakano T, Piani M and Adesso G 2013 Phys. Rev. A 88 012117 [55] Ciccarello F, Tufarelli T and Giovannetti V 2014 New. J. Phys. 16 013038 [56] Man Z X, An N B and Xia Y J 2014 Phys. Rev. A 90 062104 [57] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502 [58] Facchi P, Lidar D A and Pascazio S 2004 Phys. Rev. A 69 032314 [59] Lidar D A, Chuang I and Whaley K B 1998 Phys. Rev. Lett. 81 2594 [60] Knill E and Laflamme R 1997 Phys. Rev. A 55 900 [61] Huang A J, Shi J D, Wang D and Ye L 2017 Quantum Inf. Process 16 46 [62] Ding Z Y, He J and Ye L 2016 Ann. Phys. 377 96 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|