CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Photoemission oscillation in epitaxially grown van der Waals β-In2Se3/WS2 heterobilayer bubbles |
Jiyu Dong(董继宇)1,†, Kang Lin(林康)1,†, Congpu Mu(牟从普)1,2,‡, Zhiyan Jia(贾智研)1, Jin Xu(徐瑾)2, Anmin Nie(聂安民)1, Bochong Wang(王博翀)2, Jianyong Xiang(向建勇)1,§, Fusheng Wen(温福昇)1, Kun Zhai(翟昆)1, Tianyu Xue(薛天宇)1, and Zhongyuan Liu(柳忠元)1 |
1 Center for High Pressure Science(CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China; 2 Key Laboratory of Microstructure Materials Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Thin films of millimeter-scale continuous monolayer WS2 have been grown on SiO2/Si substrate, followed by the deposition of β-In2Se3 crystals on monolayer WS2 to prepare In2Se3/WS2 van de Waals heterostructures by a two-step chemical vapor deposition (CVD) method. After the growth of In2Se3 at elevated temperatures, high densities of In2Se3/WS2 heterostructure bubbles with monolayer to multilayer β-In2Se3 crystals atop are observed. Fluorescence of the resultant β-In2Se3/WS2 heterostructure is greatly enhanced in intensity upon the formation of bubbles, which are evidenced by the Newton's rings in optical image owing to constructive and destructive interference. In photoluminescence (PL) mapping images of monolayer β-In2Se3/monolayer WS2 heterobilayer bubble, significant oscillatory behavior of emission intensity is demonstrated due to constructive and destructive interference. However, oscillatory behaviors of peak position are also observed and come from a local heating effect induced by an excitation laser beam. The oscillatory mechanism of PL is further verified by changing the exterior pressure of bubbles placed in a home-made vacuum chamber. In addition, redshifted in peak position and broadening in peak width are observed due to strain effect during decreasing the exterior pressure of bubbles.
|
Received: 12 August 2021
Revised: 08 September 2021
Accepted manuscript online: 16 September 2021
|
PACS:
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
33.20.Fb
|
(Raman and Rayleigh spectra (including optical scattering) ?)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51732010 and 51972280), the Natural Science Foundation of Hebei Province, China (Grant No. E2019203233), the Research Program of the College Science & Technology of Hebei Province, China (Grant No. ZD2020121). |
Corresponding Authors:
Congpu Mu, Jianyong Xiang
E-mail: congpumu@ysu.edu.cn;jyxiang@ysu.edu.cn
|
Cite this article:
Jiyu Dong(董继宇), Kang Lin(林康), Congpu Mu(牟从普), Zhiyan Jia(贾智研), Jin Xu(徐瑾), Anmin Nie(聂安民), Bochong Wang(王博翀), Jianyong Xiang(向建勇), Fusheng Wen(温福昇), Kun Zhai(翟昆), Tianyu Xue(薛天宇), and Zhongyuan Liu(柳忠元) Photoemission oscillation in epitaxially grown van der Waals β-In2Se3/WS2 heterobilayer bubbles 2021 Chin. Phys. B 30 117901
|
[1] Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S, Ding F and Ruoff R S 2018 Phys. Rev. Lett. 120 186104 [2] Zhang D, Gan L, Zhang J, Zhang R, Wang Z, Feng J, Sun H and Ning C Z 2020 ACS Nano 14 6931 [3] Tripathi M, Lee F, Michail A, Anestopoulos D, McHugh J G, Ogilvie S P, Large M J, Graf A A, Lynch P J, Parthenios J, Papagelis K, Roy S, Saadi M A S R, Rahman M M, Pugno N M, King A A K, Ajayan P M and Dalton A B 2021 ACS Nano 15 2520 [4] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [5] Lloyd D, Liu X, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2016 Nano Lett. 16 5836 [6] Sie E J, Lui C H, Lee Y H, Fu L, Kong J and Gedik N 2017 Science 355 1066 [7] Jia Z, Dong J, Liu L, Xiang J, Nie A, Wen F, Mu C, Wang B, Zhai K, Yu Z, Kang M and Liu Z 2019 Appl. Phys. Lett. 115 163104 [8] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X 2017 Adv. Funct. Mater. 27 1604093 [9] Zhang D, Zeng Z, Tong Q, Jiang Y, Chen S, Zheng B, Qu J, Li F, Zheng W, Jiang F, Zhao H, Huang L, Braun K, Meixner A J, Wang X and Pan A 2020 Adv. Mater. 32 1908061 [10] Jin C, Ma E Y, Karni O, Regan E C, Wang F and Heinz T F 2018 Nat. Nanotechnol. 13 994 [11] Dong J, Liu L, Nie A, Xiang J, Zhai K, Wang B, Wen F, Mu C, Chen Y, Zhao Z, Gong Y, Tian Y and Liu Z 2020 Appl. Phys. Lett. 116 021602 [12] Ye K, Liu L, Liu Y, Nie A, Zhai K, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Gong Y, Liu Z and Tian Y 2019 Adv. Opt. Mater. 7 1900815 [13] Nagler P, Ballottin M V, Mitioglu A A, Mooshammer F, Paradiso N, Strunk C, Huber R, Chernikov A, Christianen P C M, Schüller C and Korn T 2017 Nat. Commun. 8 1551 [14] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C and Novoselov K S 2013 Science 340 1311 [15] Cai Z, Liu B, Zou X and Cheng H M 2018 Chem. Rev. 118 6091 [16] Jia Z, Dong J, Liu L, Nie A, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Xu B, Gong Y, Tian Y and Liu Z 2019 Adv. Opt. Mater. 7 1801373 [17] Sanchez D A, Dai Z and Lu N 2021 Trends Chem. 3 204 [18] Blundo E, Felici M, Yildirim T, Pettinari G, Tedeschi D, Miriametro A, Liu B, Ma W, Lu Y and Polimeni A 2020 Phys. Rev. Research 2 012024 [19] Darlington T P, Carmesin C, Florian M, Yanev E, Ajayi O, Ardelean J, Rhodes D A, Ghiotto A, Krayev A, Watanabe K, Taniguchi T, Kysar J W, Pasupathy A N, Hone J C, Jahnke F, Borys N J and Schuck P J 2020 Nat. Nanotechnol. 15 854 [20] Carmesin C, Lorke M, Florian M, Erben D, Schulz A, Wehling T O and Jahnke F 2019 Nano Lett. 19 3182 [21] Jia Z, Hu W, Xiang J, Wen F, Nie A, Mu C, Zhao Z, Xu B, Tian Y and Liu Z 2018 Nanotechnology 29 255705 [22] Feng S, Yang R, Jia Z, Xiang J, Wen F, Mu C, Nie A, Zhao Z, Xu B, Tao C, Tian Y and Liu Z 2017 ACS Appl. Mater. Interfaces 9 34071 [23] Kobayashi Y, Sasaki S, Mori S, Hibino H, Liu Z, Watanabe K, Taniguchi T, Suenaga K, Maniwa Y and Miyata Y 2015 ACS Nano 9 4056 [24] Mohapatra P K, Ranganathan K, Dezanashvili L, Houben L and Ismach A 2020 Appl. Mater. Today 20 100734 [25] He J, Li T, Zhang L, He D, Wang Y, Ding H, Pan N and Zhao H 2018 ACS Omega 3 11930 [26] Zhou B, Gong S J, Jiang K, Xu L, Zhu L, Shang L, Li Y, Hu Z and Chu J 2019 J. Phys.: Condens. Mat. 32 055703 [27] Yang R, Liu L, Feng S, Liu Y, Li S, Zhai K, Xiang J, Mu C, Nie A, Wen F, Wang B, Zhang G, Gong Y, Zhao Z, Tian Y and Liu Z 2019 ACS Appl. Mater. Interfaces 11 20979 [28] Chen Y, Gan L, Li H, Ma Y and Zhai T 2017 Adv. Mater. 29 1603550 [29] Liu L, Dong J, Huang J, Nie A, Zhai K, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Gong Y, Tian Y and Liu Z 2019 Chem. Mater. 31 10143 [30] Buscema M, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Research 7 561 [31] Lin Y, Ling X, Yu L, Huang S, Hsu A L, Lee Y H, Kong J, Dresselhaus M S and Palacios T 2014 Nano Lett. 14 5569 [32] Liu Z, Amani M, Najmaei S, Xu Q, Zou X, Zhou W, Yu T, Qiu C, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z, Dubey M, Ajayan P M and Lou J 2014 Nat. Commun. 5 5246 [33] Zhou S, Tao X and Gu Y 2016 J. Phys. Chem. C 120 4753 [34] Peimyoo N, Shang J, Yang W, Wang Y, Cong C and Yu T 2015 Nano Research 8 1210 [35] Jia Z, Liu L, Li Y, Ye K, Dong J, Yu Z, Su C, Wang W, Xu D, Liu Z and Wang Z 2020 J. Mater. Sci. 55 15857 [36] Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W and Yu T 2015 Nano Research 8 2562 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|