Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117901    DOI: 10.1088/1674-1056/ac272f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photoemission oscillation in epitaxially grown van der Waals β-In2Se3/WS2 heterobilayer bubbles

Jiyu Dong(董继宇)1,†, Kang Lin(林康)1,†, Congpu Mu(牟从普)1,2,‡, Zhiyan Jia(贾智研)1, Jin Xu(徐瑾)2, Anmin Nie(聂安民)1, Bochong Wang(王博翀)2, Jianyong Xiang(向建勇)1,§, Fusheng Wen(温福昇)1, Kun Zhai(翟昆)1, Tianyu Xue(薛天宇)1, and Zhongyuan Liu(柳忠元)1
1 Center for High Pressure Science(CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China;
2 Key Laboratory of Microstructure Materials Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  Thin films of millimeter-scale continuous monolayer WS2 have been grown on SiO2/Si substrate, followed by the deposition of β-In2Se3 crystals on monolayer WS2 to prepare In2Se3/WS2 van de Waals heterostructures by a two-step chemical vapor deposition (CVD) method. After the growth of In2Se3 at elevated temperatures, high densities of In2Se3/WS2 heterostructure bubbles with monolayer to multilayer β-In2Se3 crystals atop are observed. Fluorescence of the resultant β-In2Se3/WS2 heterostructure is greatly enhanced in intensity upon the formation of bubbles, which are evidenced by the Newton's rings in optical image owing to constructive and destructive interference. In photoluminescence (PL) mapping images of monolayer β-In2Se3/monolayer WS2 heterobilayer bubble, significant oscillatory behavior of emission intensity is demonstrated due to constructive and destructive interference. However, oscillatory behaviors of peak position are also observed and come from a local heating effect induced by an excitation laser beam. The oscillatory mechanism of PL is further verified by changing the exterior pressure of bubbles placed in a home-made vacuum chamber. In addition, redshifted in peak position and broadening in peak width are observed due to strain effect during decreasing the exterior pressure of bubbles.
Keywords:  bubble      monolayer WS2      heterostructure      In2Se3  
Received:  12 August 2021      Revised:  08 September 2021      Accepted manuscript online:  16 September 2021
PACS:  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  61.72.uj (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51732010 and 51972280), the Natural Science Foundation of Hebei Province, China (Grant No. E2019203233), the Research Program of the College Science & Technology of Hebei Province, China (Grant No. ZD2020121).
Corresponding Authors:  Congpu Mu, Jianyong Xiang     E-mail:  congpumu@ysu.edu.cn;jyxiang@ysu.edu.cn

Cite this article: 

Jiyu Dong(董继宇), Kang Lin(林康), Congpu Mu(牟从普), Zhiyan Jia(贾智研), Jin Xu(徐瑾), Anmin Nie(聂安民), Bochong Wang(王博翀), Jianyong Xiang(向建勇), Fusheng Wen(温福昇), Kun Zhai(翟昆), Tianyu Xue(薛天宇), and Zhongyuan Liu(柳忠元) Photoemission oscillation in epitaxially grown van der Waals β-In2Se3/WS2 heterobilayer bubbles 2021 Chin. Phys. B 30 117901

[1] Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S, Ding F and Ruoff R S 2018 Phys. Rev. Lett. 120 186104
[2] Zhang D, Gan L, Zhang J, Zhang R, Wang Z, Feng J, Sun H and Ning C Z 2020 ACS Nano 14 6931
[3] Tripathi M, Lee F, Michail A, Anestopoulos D, McHugh J G, Ogilvie S P, Large M J, Graf A A, Lynch P J, Parthenios J, Papagelis K, Roy S, Saadi M A S R, Rahman M M, Pugno N M, King A A K, Ajayan P M and Dalton A B 2021 ACS Nano 15 2520
[4] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[5] Lloyd D, Liu X, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2016 Nano Lett. 16 5836
[6] Sie E J, Lui C H, Lee Y H, Fu L, Kong J and Gedik N 2017 Science 355 1066
[7] Jia Z, Dong J, Liu L, Xiang J, Nie A, Wen F, Mu C, Wang B, Zhai K, Yu Z, Kang M and Liu Z 2019 Appl. Phys. Lett. 115 163104
[8] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X 2017 Adv. Funct. Mater. 27 1604093
[9] Zhang D, Zeng Z, Tong Q, Jiang Y, Chen S, Zheng B, Qu J, Li F, Zheng W, Jiang F, Zhao H, Huang L, Braun K, Meixner A J, Wang X and Pan A 2020 Adv. Mater. 32 1908061
[10] Jin C, Ma E Y, Karni O, Regan E C, Wang F and Heinz T F 2018 Nat. Nanotechnol. 13 994
[11] Dong J, Liu L, Nie A, Xiang J, Zhai K, Wang B, Wen F, Mu C, Chen Y, Zhao Z, Gong Y, Tian Y and Liu Z 2020 Appl. Phys. Lett. 116 021602
[12] Ye K, Liu L, Liu Y, Nie A, Zhai K, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Gong Y, Liu Z and Tian Y 2019 Adv. Opt. Mater. 7 1900815
[13] Nagler P, Ballottin M V, Mitioglu A A, Mooshammer F, Paradiso N, Strunk C, Huber R, Chernikov A, Christianen P C M, Schüller C and Korn T 2017 Nat. Commun. 8 1551
[14] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C and Novoselov K S 2013 Science 340 1311
[15] Cai Z, Liu B, Zou X and Cheng H M 2018 Chem. Rev. 118 6091
[16] Jia Z, Dong J, Liu L, Nie A, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Xu B, Gong Y, Tian Y and Liu Z 2019 Adv. Opt. Mater. 7 1801373
[17] Sanchez D A, Dai Z and Lu N 2021 Trends Chem. 3 204
[18] Blundo E, Felici M, Yildirim T, Pettinari G, Tedeschi D, Miriametro A, Liu B, Ma W, Lu Y and Polimeni A 2020 Phys. Rev. Research 2 012024
[19] Darlington T P, Carmesin C, Florian M, Yanev E, Ajayi O, Ardelean J, Rhodes D A, Ghiotto A, Krayev A, Watanabe K, Taniguchi T, Kysar J W, Pasupathy A N, Hone J C, Jahnke F, Borys N J and Schuck P J 2020 Nat. Nanotechnol. 15 854
[20] Carmesin C, Lorke M, Florian M, Erben D, Schulz A, Wehling T O and Jahnke F 2019 Nano Lett. 19 3182
[21] Jia Z, Hu W, Xiang J, Wen F, Nie A, Mu C, Zhao Z, Xu B, Tian Y and Liu Z 2018 Nanotechnology 29 255705
[22] Feng S, Yang R, Jia Z, Xiang J, Wen F, Mu C, Nie A, Zhao Z, Xu B, Tao C, Tian Y and Liu Z 2017 ACS Appl. Mater. Interfaces 9 34071
[23] Kobayashi Y, Sasaki S, Mori S, Hibino H, Liu Z, Watanabe K, Taniguchi T, Suenaga K, Maniwa Y and Miyata Y 2015 ACS Nano 9 4056
[24] Mohapatra P K, Ranganathan K, Dezanashvili L, Houben L and Ismach A 2020 Appl. Mater. Today 20 100734
[25] He J, Li T, Zhang L, He D, Wang Y, Ding H, Pan N and Zhao H 2018 ACS Omega 3 11930
[26] Zhou B, Gong S J, Jiang K, Xu L, Zhu L, Shang L, Li Y, Hu Z and Chu J 2019 J. Phys.: Condens. Mat. 32 055703
[27] Yang R, Liu L, Feng S, Liu Y, Li S, Zhai K, Xiang J, Mu C, Nie A, Wen F, Wang B, Zhang G, Gong Y, Zhao Z, Tian Y and Liu Z 2019 ACS Appl. Mater. Interfaces 11 20979
[28] Chen Y, Gan L, Li H, Ma Y and Zhai T 2017 Adv. Mater. 29 1603550
[29] Liu L, Dong J, Huang J, Nie A, Zhai K, Xiang J, Wang B, Wen F, Mu C, Zhao Z, Gong Y, Tian Y and Liu Z 2019 Chem. Mater. 31 10143
[30] Buscema M, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Research 7 561
[31] Lin Y, Ling X, Yu L, Huang S, Hsu A L, Lee Y H, Kong J, Dresselhaus M S and Palacios T 2014 Nano Lett. 14 5569
[32] Liu Z, Amani M, Najmaei S, Xu Q, Zou X, Zhou W, Yu T, Qiu C, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z, Dubey M, Ajayan P M and Lou J 2014 Nat. Commun. 5 5246
[33] Zhou S, Tao X and Gu Y 2016 J. Phys. Chem. C 120 4753
[34] Peimyoo N, Shang J, Yang W, Wang Y, Cong C and Yu T 2015 Nano Research 8 1210
[35] Jia Z, Liu L, Li Y, Ye K, Dong J, Yu Z, Su C, Wang W, Xu D, Liu Z and Wang Z 2020 J. Mater. Sci. 55 15857
[36] Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W and Yu T 2015 Nano Research 8 2562
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[9] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[10] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[11] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[12] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[13] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[14] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[15] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
No Suggested Reading articles found!