Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110310    DOI: 10.1088/1674-1056/ac0bab
GENERAL Prev   Next  

Effects of classical random external field on the dynamics of entanglement in a four-qubit system

Edwige Carole Fosso1,2, Fridolin Tchangnwa Nya2, Lionel Tenemeza Kenfack1, and Martin Tchoffo1,3,†
1 Research Unit of Condensed Matter, Electronic and Signal Processing, Department of Physics, Dschang School of Sciences and Technology, University of Dschang, PO Box:67 Dschang, Cameroon;
2 Material Science Research Group, Physics Laboratory, Department of Physics, Post Graduate School, University of Maroua, PO Box:814 Maroua, Cameroon;
3 Centre d'Etudes et de Recherches en Agronomie et en Biodiversite, Faculte d'Agronomie et des Sciences Agricoles, Universite de Dschang, Cameroun
Abstract  We investigate the dynamics of entanglement through negativity and witness operators in a system of four non-interacting qubits driven by a classical phase noisy laser characterized by a classical random external field (CREF). The qubits are initially prepared in the GHZ-type and W-type states and interact with the CREF in two different qubit-field configurations, namely, common environment and independent environments in which the cases of equal and different field phase probabilities are distinguished. We find that entanglement exhibits different decaying behavior, depending on the input states of the qubits, the qubit-field coupling configuration, and field phase probabilities. On the one hand, we demonstrate that the coupling of the qubits in a common environment is an alternative and more efficient strategy to completely shield the system from the detrimental impacts of the decoherence process induced by a CREF, independent of the input state and the field phase probabilities considered. Also, we show that GHZ-type states have strong dynamics under CREF as compared to W-type states. On the other hand, we demonstrate that in the model investigated the system robustness's can be greatly improved by increasing the number of qubits constituting the system.
Keywords:  entanglement      qubit and classical random external field  
Received:  09 April 2021      Revised:  21 May 2021      Accepted manuscript online:  16 June 2021
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Corresponding Authors:  Martin Tchoffo     E-mail:  mtchoffo2000@yahoo.fr

Cite this article: 

Edwige Carole Fosso, Fridolin Tchangnwa Nya, Lionel Tenemeza Kenfack, and Martin Tchoffo Effects of classical random external field on the dynamics of entanglement in a four-qubit system 2021 Chin. Phys. B 30 110310

[1] Vedral V 2002 Rev. Mod. Phys. 74 197
[2] Uman K, Rehman J Ur and Hyundong S 2020 Sci. Rep. 10 1
[3] Esteve D, Raimond J M and Dalibard J 2004 Quantum entanglement and information processing: lecture notes of the Les Houches Summer School 2003 (Elsevier)
[4] Timpson C G 2004 arXiv: 0412063 [quant-ph]
[5] Kenfack L T, Tchoffo M and Fai L C 2017 Euro. Phys. J. Plus 132 91
[6] Korolkova N and Leuchs G 2019 Reports on Progress in Physics 82 056001
[7] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[8] Schrodinger E 1935 Naturwissenschaften 23 1
[9] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[10] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[11] Xie C, Liu Y, Xing H, Chen J and Zhang Z 2015 Quantum Inf. Process. 14 653
[12] Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A. 59 156
[13] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[14] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[15] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[16] Li Y C and Lin H Q 2011 Phys. Rev. A 83 052323
[17] Mazzola L, Piilo J and Maniscalo S 2010 Phys. Rev. Lett. 104 200401
[18] Vasile R, Olivares S, Paris M G A and Maniscalco S 2009 Phys. Rev. A 80 062324
[19] Paz J P and Roncaglia A J 2008 Phys. Rev. Lett. 100 220401
[20] Nielsen M A and Chuang I 2002 Quantum computation and quantum information (American Association of Physics Teachers)
[21] Cao Y, Romero J, Olson J P, et al. 2019 Chem. Rev. 119 10856
[22] Ma X S, Liu G S and Wang A M 2010 Commun. Theor. Phys. 54 79
[23] Kenfack L T, Tchoffo M, Jipdi M N, Fuoukeng G C and Fai L C 2018 J. Phys. Commun. 2 055011
[24] Franco R L, Bellomo B, Andersson E and Compagno G 2012 Phys. Rev. A. 85 032318
[25] Kenfack L T, Tchoffo M and Fai L C 2019 Int. J. Theor. Phys. 58 4278
[26] Kenfack L T, Tchoffo M, Fouokeng G C and Fai L C 2017 Int. J. Quant. Inf. 15 1750038
[27] Kenfack L T, Tchoffo M, Fouokeng G C and Fai L C 2018 Quantum Inf. Process. 17 1
[28] Guo Y, Fang M, Zhang S and Liu X 2015 Phys. Scr. 90 035103
[29] Metwally N, Eleuch H and Obada A S 2016 Laser Phys. Lett. 13 105206
[30] Weinstein Y S 2009 Phys. Rev. A 79 012318
[31] Mazzola L, Maniscalco S, Piilo J, Suominen K A, and Garraway B M 2009 Phys. Rev. A 79 042302
[32] Beggi A, Buscemi F and Bordone P 2016 Quantum Inf. Process. 15 3711
[33] Wei J L, Li X L, Zhang X Z and Guo J L 2016 Quant. Inf. Process. 15 2425
[34] Kenfack L T, Tchoffo M, Fai L C and Fouokeng G C 2017 Physica B 511 123
[35] Carvacho G, Graffitti F, DAmbrosio V, Hiesmayr B C and Sciarrino F 2017 Scientific reports 7 1
[36] Reusch A, Sperling J and Vogel W 2015 Phys. Rev. A. 91 042324
[37] Guhne O and Tóth G 2009 Physics Reports 474 1
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!