Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110312    DOI: 10.1088/1674-1056/abfcc8
GENERAL Prev   Next  

Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates

Li Wang(王力)1, Ji Li(李吉)2,†, Xiao-Lin Zhou(周晓林)3, Xiang-Rong Chen(陈向荣)1, and Wu-Ming Liu(刘伍明)4,5,6,‡
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 College of Physics, Taiyuan Normal University, Jinzhong 030619, China;
3 School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China;
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
6 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The ground state properties of the rotating Bose-Einstein condensates (BECs) with SU(3) spin-orbit coupling (SOC) in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromagnetic systems present three half-skyrmion chains at an angle of 120° to each other along the coupling directions. With the enhancement of isotropic SU(3) SOC strength, the position of the three chains remains unchanged, in which the number of half-skyrmions increases gradually. With the increase of rotation frequency and atomic density-density interaction, the number of half-skyrmions on the three chains and in the regions between two chains increases gradually. The relationships of the total number of half-skyrmions on the three chains with the increase of SU(3) SOC strength, rotation frequency and atomic density-density interaction are also given. In addition, changing the anisotropic SU(3) SOC strength can regulate the number and morphology of the half-skyrmion chains.
Keywords:  Bose-Einstein condensates      SU(3) spin-orbit coupling      rotation      half-skyrmion chains  
Received:  24 March 2021      Revised:  28 April 2021      Accepted manuscript online:  29 April 2021
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grant Nos. 61835013 and 11971067), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300 and XDB21030300), the Beijing Natural Science Foundation, China (Grant No. 1182009), and the Beijing Great Wall Talents Cultivation Program (Grant No. CIT&TCD20180325).
Corresponding Authors:  Ji Li, Wu-Ming Liu     E-mail:  liji163love@163.com;wmliu@iphy.ac.cn

Cite this article: 

Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明) Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates 2021 Chin. Phys. B 30 110312

[1] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature 7109 312
[2] Lobo C, Sinatra A and Castin Y 2004 Phys. Rev. Lett. 92 020403
[3] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
[4] Khawaja U A and Stoof H 2001 Nature 411 918
[5] Leslie L S, Hansen A, Wright K C, Deutsch B M and Bigelow N P 2009 Phys. Rev. Lett. 103 250401
[6] Choi J Y, Kwon W J and Shin Y I 2012 Phys. Rev. Lett. 108 035301
[7] Ray M W, Ruokokoski E, Kandel S, Möttönen M and Hall D S 2014 Nature 505 657
[8] Ray M W, Ruokokoski E, Tiurev K, Möttönen M and Hall D S 2015 Science 348 544
[9] Pietilä V and Möttönen M 2009 Phys. Rev. Lett. 103 030401
[10] Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H and Möttönen M 2016 Nat. Phys. 12 478
[11] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys 82 1959
[12] Qi X L and Zhang S C 2011 Rev. Mod. Phys 83 1057
[13] Read N and Green D 2000 Phys. Rev. Lett. 61 10267
[14] Lin Y J, García K J and Spielman I B 2011 Nature 471 83
[15] Wang P J, Yu Z Q, Fu Z, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[16] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Zwierlein M W and Bakr W S 2012 Phys. Rev. Lett. 109 095302
[17] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
[18] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[19] Fu Z, Huang L, Meng Z, Wang P, Zhang L, Zhang S, Zhai H, Zhang P and Zhang J 2014 Nat. Phys. 10 110
[20] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
[21] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[22] Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
[23] Anderson B M, Juzeliūnas G, Galitski V M and Spielman I B 2012 Phys. Rev. Lett. 108 235301
[24] Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
[25] Meng Z M, Huang L H, Peng P, Li D H, Chen L C, Xu Y, Zhang C, Wang P and Zhang J 2016 Phys. Rev. Lett. 117 235304
[26] Chen K J, Wu F and Hu J S 2020 Phys. Rev. A 102 013316
[27] Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S and Pan J W 2014 Nat. Phys. 10 314
[28] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J and Pan J W 2016 Science 354 83
[29] Ruseckas J, Juzeliúnas G, Öhberg P and Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
[30] Campbell D L, Juzeliúnas G and Spielman I B 2011 Phys. Rev. A 84 025602
[31] Liu X J, Borunda M F, Liu X and Sinova J 2009 Phys. Rev. Lett. 102 046402
[32] Anderson B M, Spielman I B and Juzeliúnas G 2013 Phys. Rev. Lett. 111 125301
[33] Lan Z H and Öhberg P 2014 Phys. Rev. A 89 023630
[34] Stanescu T D, Anderson B and Galitsk V 2008 Phys. Rev. A 78 023616
[35] Galitski V and Spielman I B 2013 Nature 494 49
[36] Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
[37] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S C 2016 Phys. Rev. A 94 033629
[38] Grab T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys. Rev. B 90 195127
[39] Li H and Chen F L 2019 Chin. Phys. B 28 070302
[40] Yue H X and Liu Y K 2020 Commun. Theor. Phys. 72 025501
[41] Wang J G, Li Y Q and Dong Y F 2020 Chin. Phys. B 29 100304
[42] Xu X Q and Han J H 2011 Phys. Rev. Lett. 107 200401
[43] Liu C F, Fan H, Zhang Y C, Wang D S and Liu W M 2012 Phys. Rev. A 86 053616
[44] Zhou X F, Zhou J and Wu C J 2011 Phys. Rev. A 84 063624
[45] Sakaguchi H and Umeda K 2016 J. Phys. Soc. Jpn. 85 064402
[46] Zhang X F, Gao R S, Wang X, Dong R F, Liu T and Zhang S G 2013 Phys. Lett. A 377 1109
[47] Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F and Zhang S G 2014 Chin. Phys. B 23 070308
[48] Wang H, Wen L H, Yang H, Shi C X and Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301
[49] Radić J, Sedrakyan T A, Spielman I B and Galitski V 2011 Phys. Rev. A 84 063604
[50] Fetter A L 2014 Phys. Rev. A 89 023629
[51] Liu C F and Liu W M 2012 Phys. Rev. A 86 033602
[52] Wang J G, Xu L L and Yang S J 2017 Phys. Rev. A 96 033629
[53] Arfken G B, Weber H J and Harris F E 2000 Mathematical Methods for Physicists (Elsevier: Academic Press)
[54] Li J, Yu Y M, Zhuang L and Liu W M 2017 Phys. Rev. A 95 043633
[55] Li J, Zhang X F and Liu W M 2018 Ann. Phys. 396 87
[56] Zhang X F, Dong R F, Liu T, Liu W M and Zhang S G 2012 Phys. Rev. A 86 063628
[57] Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen 1 C A, Huang P P, Yip S K, Kawaguchi Y and Lin Y J 2018 Phys. Rev. Lett. 121 113204
[58] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 013624
[1] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[5] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[6] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[7] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[8] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[9] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[10] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[11] Generation of diffraction-free vectorial elliptic hollow beams with space-varying inhomogeneous polarizations
Hui-Rong Li(李会容), Peng-Yi Zhao(赵朋义), and Jian-Ping Yin(印建平). Chin. Phys. B, 2021, 30(8): 084204.
[12] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[13] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[14] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[15] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
No Suggested Reading articles found!