CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene |
Mei-Rong Liu(刘美荣)1, Zheng-Fang Liu(刘正方)1,†, Ruo-Long Zhang(张若龙)1, Xian-Bo Xiao(肖贤波)2, and Qing-Ping Wu(伍清萍)1,‡ |
1 Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China; 2 School of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China |
|
|
Abstract We study the Goos-Hänchen-like shift of single silicene barrier under the external perpendicular electric field, off-resonant circularly polarized light and the exchange field modulation using the stationary-phase method. The results show that the Goos-Hänchen-like shift of silicene resulting from the external perpendicular electric field does not have the characteristics of spin or valley polarization, while that from off-resonant circularly polarized light or the exchange field is spin-polarized. More importantly, the combined effect of the external perpendicular electric field and the exchange field or off-resonant circularly polarized light can cause the Goos-Hänchen-like shift of the system to be spin and valley polarized. It is particularly worth noting that when the three modulations are considered at the same time, as the exchange field changes, the system will have a positive or negative Goos-Hänchen-like shift.
|
Received: 04 June 2021
Revised: 18 July 2021
Accepted manuscript online: 17 August 2021
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11864012 and 11764013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BABL201018), and Jiangxi University of Traditional Chinese Medicine 1050 Youth Talent Project (Grant No. 5142001010). |
Corresponding Authors:
Zheng-Fang Liu, Qing-Ping Wu
E-mail: lzhengfang@ecjtu.edu.cn;wuqingping78519@163.com
|
Cite this article:
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍) Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene 2021 Chin. Phys. B 30 107302
|
[1] Goos F and Hänchen H 1947 Ann. Phys. 436 333 [2] Goos F and Lindberg-Hänchen H 1949 Ann. Phys. 440 251 [3] Sakata T, Togo H and Shimokawa F 2000 Appl. Phys. Lett. 76 2841 [4] Yin X B and Hesselink L 2006 Appl. Phys. Lett. 89 261108 [5] Wang X P, Yin C, Sun J J, Li H G, Wang Y, Ran M W and Cao Z Q 2013 Opt. Express 21 13380 [6] Beenakker C, Sepkhanov R, Akhmerov A and Tworzydlo J 2009 Phys. Rev. Lett. 102 146804 [7] Song Y, Wu H C and Guo Y 2012 Appl. Phys. Lett. 100 253116 [8] Mekkaoui M, Jellal A and Bahlouli H 2019 Physica E 111 218 [9] Lu M W, Cao X L, Huang X H, Jiang Y Q and Li S 2014 J. Appl. Phys. 115 174305 [10] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [11] Macêdo R and Dumelow T 2013 J. Opt. 15 014013 [12] Macêdo R, Stamps R and Dumelow T 2014 Opt. Express 22 28467 [13] Chen X, Li C F and Ban Y 2006 Phys. Lett. A 354 161 [14] Chen X, Li C F and Ban Y 2008 Phys. Rev. B 77 073307 [15] Chen X, Lu X J, Ban Y and Li C F 2013 J. Opt. 15 033001 [16] Chen X, Tao J W and Ban Y 2011 Eur. Phys. J. B 79 203 [17] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430 [18] Wu Z H, Zhai F, Peeters F M, Xu H Q and Chang K 2011 Phys. Rev. Lett. 106 176802 [19] Zhai F, Ma Y L and Chang K 2011 New J. Phys. 13 083029 [20] Cao Z Z, Cheng Y F and Li G Q 2012 Physica B 407 4254 [21] Ghadiri H and Saffarzadeh A 2017 J. Phys.: Condens. Matter 29 115303 [22] Drummond N, Zolyomi V and Fal'Ko V 2012 Phys. Rev. B 85 075423 [23] Kara A, Enriquez H, Seitsonen A P, Voon L L Y, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1 [24] Zhu B S, Wang Y and Lou Y Y 2016 J. Appl. Phys. 119 164304 [25] Yokoyama T 2013 Phys. Rev. B 87 241409 [26] Niu Z P, Zhang Y M and Dong S H 2015 New J. Phys. 17 073026 [27] Missault N, Vasilopoulos P, Peeters F and Van Duppen B 2016 Phys. Rev. B 93 125425 [28] Lu W T, Li Y F and Tian H Y 2018 Nanoscale Res. Lett. 13 1 [29] Chang L L, Wu Q P, Zhang R L, Li Y Z, Liu M R, Xiao X B and Liu Z F 2021 Physica B 601 412552 [30] Jiang Q D, Jiang H, Liu H, Sun Q F and Xie X C 2015 Phys. Rev. Lett. 115 156602 [31] Mohammadi Y 2018 Solid State Commun. 272 37 [32] Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444 [33] Azarova E and Maksimova G 2017 J. Phys. Chem. Solids 100 143 [34] Azarova E and Maksimova G 2015 Physica E 74 1 [35] Chen X and Tao J W 2009 Appl. Phys. Lett. 94 262102 [36] Beenakker C 2008 Rev. Mod. Phys. 80 1337 [37] Katsnelso M, Novoselov K and Geim A 2006 Nat. Phys. 2 620 [38] Wu Q P, Liu Z F, Chen A X, Xiao X B and Miao G X 2017 Sci. Rep. 7 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|