Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106103    DOI: 10.1088/1674-1056/ac1416
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3

Zhongxu Li(李忠旭)1,3,†, Kai Huang(黄凯)1,4,†, Yanda Ji(吉彦达)2, Yang Chen(陈阳)1,3, Xiaomeng Zhao(赵晓蒙)1,4, Min Zhou(周民)1, Tiangui You(游天桂)1, Shibin Zhang(张师斌)1, and Xin Ou(欧欣)1,3,‡
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences(CAS), Shanghai 200050, China;
2 MIIT Key Laboratory of Aerospace Information Materials and Physics&College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Shanghai Novel Silicon Integration Technology Co., Ltd., Jiading, Shanghai, China
Abstract  The monocrystalline LiNbO3 (LN) and LiTaO3 (LT) plates have been qualified as a kind of material platform for high performance RF filter that is considerable for the 5G communication. LN and LT thin films are usually transferred on handle wafers by combining ion-slicing and wafer bonding technique to form a piezoelectric on insulator (POI) substrate. The ion implantation is a key process and the implantation-induced strain is essential for the layer transfer. Here, we reported the strain profile of ion implanted rotated Y-cut LN and LT. The ion implantation generates the out-of-plane tensile strain of the sample surface and (006) plane, while both the tensile and compressive strain are observed on the (030) plane. The implanted ions redistributed due to the anisotropy of LN and LT, and induce the main tensile normal to the (006) plane. Meanwhile, the (030) planes are contracted due to the Poisson effect with the interstitial ions disturbing and mainly show a compressive strain profile.
Keywords:  x-ray diffraction (XRD)      implantation      strain      piezoelectric  
Received:  08 June 2021      Revised:  07 July 2021      Accepted manuscript online:  14 July 2021
PACS:  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB1803902), the National Natural Science Foundation of China (Grant Nos. 11905282, 61874128, 61851406, 11705262, and 6187407), the Frontier Science Key Program of CAS (Grant Nos. QYZDY-SSW-JSC032 and ZDBS-LY-JSC009), Chinese-Austrian Cooperative Research and Development Project (Grant No. GJHZ201950), the Program of Shanghai Academic Research Leader (Grant No. 19XD1404600), K. C. Wong Education Foundation (Grant No. GJTD-2019-11), Shanghai Sailing Program (Grant Nos. 19YF1456200 and 19YF1456400), Shanghai Science and Technology Innovation Action Plan Program (Grant No. 19XD1404600).
Corresponding Authors:  Xin Ou     E-mail:  ouxin@mail.sim.ac.cn

Cite this article: 

Zhongxu Li(李忠旭), Kai Huang(黄凯), Yanda Ji(吉彦达), Yang Chen(陈阳), Xiaomeng Zhao(赵晓蒙), Min Zhou(周民), Tiangui You(游天桂), Shibin Zhang(张师斌), and Xin Ou(欧欣) Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3 2021 Chin. Phys. B 30 106103

[1] Afif O, Federico B, Volker B, Katsutoshi K, Patrick M, Michal M, Olav Q, Malte S, Hans S, Hidekazu T, Hugo T, Mikko A U, Bogdan T and F M 2014 IEEE Commun. Mag. 26
[2] Wang C X, Haider F, Gao X Q, You X H, Yang Y, Yuan D F, Aggoune H M, Haas H, Fletcher S and Hepsaydir E 2014 IEEE Commun. Mag. 52 122
[3] Arun A, M G and A K 2015 J. Electr. Electron. Eng. Ame. 3 22
[4] Gupta A and Jha R K 2015 IEEE Access 3 1206
[5] Schulz M B, Matsinger B J and Holland M G 1970 J. Appl. Phys. 41 2755
[6] Neurgaonkar R R, Kalisher M H, Lim T C, Staples E J and Keester K L 1980 Mater. Res. Bull. 15 1235
[7] Ruby R 2015 IEEE Microw. Mag. 16 46
[8] Gorisse M, Drouin A, Sinquin Y, Huyet I, Courjon E, Bernard F, Clairet A, Laroche T, Bousquet M, Reinhardt A, Butaud E, Ballandras S and Radu I 2018 IEEE International Ultrasonics Symposium, October 22-25, Kobe, Japan
[9] Bhugra H and Piazza G 2017 Piezoelectric MEMS Resonators (Springer International Publishing, Cham, Switzerland), p. 99
[10] Plessky V, Yandrapalli S, Turner P J, Villanueva L G, Koskela J and Hammond R B 2019 Electron. Lett. 55 98
[11] Takai T, Iwamoto H, Takamine Y, Fuyutsume T, Nakao T, Hiramoto M, Toi T and Koshino M 2017 IEEE International Ultrasonics Symposium, September 6-9, 2017, Washington, DC, USA
[12] Emad A, Lu R, Li M H, Yang Y, Wu T and Gong S 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, Januaray 27-31, 2019, Seoul, South Korea, 282
[13] Gruber M, Konetschnik R, Popov M, Spitaler J, Supancic P, Kiener D and Bermejo R 2018 Acta Mater. 150 373
[14] Nishimura E, Okano K, Terashima A and Hoshikawa K 2019 Cryst. Res. Technol. 54 1900023
[15] Reinhardt A, Benaissa L, David J B, Lamard N, Kovacova V, Boudou N and Defas E 2014 IEEE International Ultrasonics Symposium, September 3-6, 2014, Chicago, IL, USA, 773
[16] Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 017303
[17] Liao Q, Li B, Kang L and Li X 2020 Chin. Phys. B 29 076103
[18] Yan Y, Huang K, Zhou H, Zhao X, Li W, Li Z, Yi A, Huang H, Lin J, Zhang S, Zhou M, Xie J, Zeng X, Liu R, Yu W, You T and Ou X 2019 ACS Appl. Electron. Mater. 1 1660
[19] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[20] Huang K, Li Z, Yan Y, Zhao X, Li W, You T, Zhang S, Zhou H, Lin J, Xu W, Yi A, Huang H, Zhou M, Yu W, Xie J, Zeng X, Liu R and Ou X 2019 AIP Adv. 9 085001
[21] Bianconi M, Argiolas N, Bazzan M, Bentini G G, Cerutti A, Chiarini M, Pennestri G, Mazzoldi P and Sada C 2007 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 249 122
[22] Ma C, Lu F and Ma Y 2015 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 342 76
[23] Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S and Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 310 75
[24] Morgan D 2007 Surface Acoustic Wave Filters (Northampton: Academic Press) p. 91
[25] Shibayama K, Yamanouchi K, Sato H and Meguro T 1976 Proc. IEEE 64 595
[26] Weis R S and Gaylord T K 1985 Appl. Phys. A 37 191
[27] Hsu R, Maslen E N, Duboulay D and Ishizawa N 1997 Acta Crystallogr. Sect. B-Struct. Commun. 53 420
[28] Wong K K 2002 Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, London, United Kingdom) p. 9
[29] Ghatak J, Satpati B, Umananda M, Satyam P V, Akimoto K, Ito K and Emoto T 2006 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 244 64
[30] Sousbie N, Capello L, Eymery J and Rieutord F 2006 J. Appl. Phys. 99 103509
[31] Debelle A and Declémy A 2010 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 268 1460
[32] Benton J L, Libertino S, Kringho J P, Eaglesham D J, Poate J M and Coffa S 1997 J. Appl. Phys. 82 120
[33] Gotz G and Karge H 1983 Nucl. Instrum. Methods Phys. Res. 209 1079
[34] Rivera A, Garcia G, Olivares J, Crespillo M L and Agulló-López F 2011 J. Phys. D: Appl. Phys. 44 475301
[35] Ma C, Lu F, Li K and Liu K 2018 Mater. Res. Express 5 025204
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[10] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[11] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[12] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[13] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[14] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[15] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
No Suggested Reading articles found!