Special Issue:
SPECIAL TOPIC — Ion beam modification of materials and applications
|
SPECIAL TOPIC—Ion beam modification of materials and applications |
Prev
Next
|
|
|
Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3 |
Zhongxu Li(李忠旭)1,3,†, Kai Huang(黄凯)1,4,†, Yanda Ji(吉彦达)2, Yang Chen(陈阳)1,3, Xiaomeng Zhao(赵晓蒙)1,4, Min Zhou(周民)1, Tiangui You(游天桂)1, Shibin Zhang(张师斌)1, and Xin Ou(欧欣)1,3,‡ |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences(CAS), Shanghai 200050, China; 2 MIIT Key Laboratory of Aerospace Information Materials and Physics&College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Shanghai Novel Silicon Integration Technology Co., Ltd., Jiading, Shanghai, China |
|
|
Abstract The monocrystalline LiNbO3 (LN) and LiTaO3 (LT) plates have been qualified as a kind of material platform for high performance RF filter that is considerable for the 5G communication. LN and LT thin films are usually transferred on handle wafers by combining ion-slicing and wafer bonding technique to form a piezoelectric on insulator (POI) substrate. The ion implantation is a key process and the implantation-induced strain is essential for the layer transfer. Here, we reported the strain profile of ion implanted rotated Y-cut LN and LT. The ion implantation generates the out-of-plane tensile strain of the sample surface and (006) plane, while both the tensile and compressive strain are observed on the (030) plane. The implanted ions redistributed due to the anisotropy of LN and LT, and induce the main tensile normal to the (006) plane. Meanwhile, the (030) planes are contracted due to the Poisson effect with the interstitial ions disturbing and mainly show a compressive strain profile.
|
Received: 08 June 2021
Revised: 07 July 2021
Accepted manuscript online: 14 July 2021
|
PACS:
|
61.72.Hh
|
(Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))
|
|
85.40.Ry
|
(Impurity doping, diffusion and ion implantation technology)
|
|
68.55.Ln
|
(Defects and impurities: doping, implantation, distribution, concentration, etc.)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB1803902), the National Natural Science Foundation of China (Grant Nos. 11905282, 61874128, 61851406, 11705262, and 6187407), the Frontier Science Key Program of CAS (Grant Nos. QYZDY-SSW-JSC032 and ZDBS-LY-JSC009), Chinese-Austrian Cooperative Research and Development Project (Grant No. GJHZ201950), the Program of Shanghai Academic Research Leader (Grant No. 19XD1404600), K. C. Wong Education Foundation (Grant No. GJTD-2019-11), Shanghai Sailing Program (Grant Nos. 19YF1456200 and 19YF1456400), Shanghai Science and Technology Innovation Action Plan Program (Grant No. 19XD1404600). |
Corresponding Authors:
Xin Ou
E-mail: ouxin@mail.sim.ac.cn
|
Cite this article:
Zhongxu Li(李忠旭), Kai Huang(黄凯), Yanda Ji(吉彦达), Yang Chen(陈阳), Xiaomeng Zhao(赵晓蒙), Min Zhou(周民), Tiangui You(游天桂), Shibin Zhang(张师斌), and Xin Ou(欧欣) Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3 2021 Chin. Phys. B 30 106103
|
[1] Afif O, Federico B, Volker B, Katsutoshi K, Patrick M, Michal M, Olav Q, Malte S, Hans S, Hidekazu T, Hugo T, Mikko A U, Bogdan T and F M 2014 IEEE Commun. Mag. 26 [2] Wang C X, Haider F, Gao X Q, You X H, Yang Y, Yuan D F, Aggoune H M, Haas H, Fletcher S and Hepsaydir E 2014 IEEE Commun. Mag. 52 122 [3] Arun A, M G and A K 2015 J. Electr. Electron. Eng. Ame. 3 22 [4] Gupta A and Jha R K 2015 IEEE Access 3 1206 [5] Schulz M B, Matsinger B J and Holland M G 1970 J. Appl. Phys. 41 2755 [6] Neurgaonkar R R, Kalisher M H, Lim T C, Staples E J and Keester K L 1980 Mater. Res. Bull. 15 1235 [7] Ruby R 2015 IEEE Microw. Mag. 16 46 [8] Gorisse M, Drouin A, Sinquin Y, Huyet I, Courjon E, Bernard F, Clairet A, Laroche T, Bousquet M, Reinhardt A, Butaud E, Ballandras S and Radu I 2018 IEEE International Ultrasonics Symposium, October 22-25, Kobe, Japan [9] Bhugra H and Piazza G 2017 Piezoelectric MEMS Resonators (Springer International Publishing, Cham, Switzerland), p. 99 [10] Plessky V, Yandrapalli S, Turner P J, Villanueva L G, Koskela J and Hammond R B 2019 Electron. Lett. 55 98 [11] Takai T, Iwamoto H, Takamine Y, Fuyutsume T, Nakao T, Hiramoto M, Toi T and Koshino M 2017 IEEE International Ultrasonics Symposium, September 6-9, 2017, Washington, DC, USA [12] Emad A, Lu R, Li M H, Yang Y, Wu T and Gong S 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, Januaray 27-31, 2019, Seoul, South Korea, 282 [13] Gruber M, Konetschnik R, Popov M, Spitaler J, Supancic P, Kiener D and Bermejo R 2018 Acta Mater. 150 373 [14] Nishimura E, Okano K, Terashima A and Hoshikawa K 2019 Cryst. Res. Technol. 54 1900023 [15] Reinhardt A, Benaissa L, David J B, Lamard N, Kovacova V, Boudou N and Defas E 2014 IEEE International Ultrasonics Symposium, September 3-6, 2014, Chicago, IL, USA, 773 [16] Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 017303 [17] Liao Q, Li B, Kang L and Li X 2020 Chin. Phys. B 29 076103 [18] Yan Y, Huang K, Zhou H, Zhao X, Li W, Li Z, Yi A, Huang H, Lin J, Zhang S, Zhou M, Xie J, Zeng X, Liu R, Yu W, You T and Ou X 2019 ACS Appl. Electron. Mater. 1 1660 [19] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502 [20] Huang K, Li Z, Yan Y, Zhao X, Li W, You T, Zhang S, Zhou H, Lin J, Xu W, Yi A, Huang H, Zhou M, Yu W, Xie J, Zeng X, Liu R and Ou X 2019 AIP Adv. 9 085001 [21] Bianconi M, Argiolas N, Bazzan M, Bentini G G, Cerutti A, Chiarini M, Pennestri G, Mazzoldi P and Sada C 2007 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 249 122 [22] Ma C, Lu F and Ma Y 2015 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 342 76 [23] Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S and Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 310 75 [24] Morgan D 2007 Surface Acoustic Wave Filters (Northampton: Academic Press) p. 91 [25] Shibayama K, Yamanouchi K, Sato H and Meguro T 1976 Proc. IEEE 64 595 [26] Weis R S and Gaylord T K 1985 Appl. Phys. A 37 191 [27] Hsu R, Maslen E N, Duboulay D and Ishizawa N 1997 Acta Crystallogr. Sect. B-Struct. Commun. 53 420 [28] Wong K K 2002 Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, London, United Kingdom) p. 9 [29] Ghatak J, Satpati B, Umananda M, Satyam P V, Akimoto K, Ito K and Emoto T 2006 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 244 64 [30] Sousbie N, Capello L, Eymery J and Rieutord F 2006 J. Appl. Phys. 99 103509 [31] Debelle A and Declémy A 2010 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 268 1460 [32] Benton J L, Libertino S, Kringho J P, Eaglesham D J, Poate J M and Coffa S 1997 J. Appl. Phys. 82 120 [33] Gotz G and Karge H 1983 Nucl. Instrum. Methods Phys. Res. 209 1079 [34] Rivera A, Garcia G, Olivares J, Crespillo M L and Agulló-López F 2011 J. Phys. D: Appl. Phys. 44 475301 [35] Ma C, Lu F, Li K and Liu K 2018 Mater. Res. Express 5 025204 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|