Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010502    DOI: 10.1088/1674-1056/ac140f
GENERAL Prev   Next  

A new simplified ordered upwind method for calculating quasi-potential

Qing Yu(虞晴) and Xianbin Liu(刘先斌)
State Key Laboratory of Mechanics and Control for Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  We present a new method for calculation of quasi-potential, which is a key concept in the large deviation theory. This method adopts the "ordered" idea in the ordered upwind algorithm and different from the finite difference upwind scheme, the first-order line integral is used as its update rule. With sufficient accuracy, the new simplified method can greatly speed up the computational time. Once the quasi-potential has been computed, the minimum action path (MAP) can also be obtained. Since the MAP is of concern in most stochastic situations, the effectiveness of this new method is checked by analyzing the accuracy of the MAP. Two cases of isotropic diffusion and anisotropic diffusion are considered. It is found that this new method can both effectively compute the MAPs for systems with isotropic diffusion and reduce the computational time. Meanwhile anisotropy will affect the accuracy of the computed MAP.
Keywords:  quasi-potential      ordered upwind algorithm      minimum action path      isotropic diffusion and anisotropic diffusion  
Received:  30 May 2021      Revised:  30 June 2021      Accepted manuscript online:  14 July 2021
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.Ca (Noise)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11772149 and 12172167), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Grant No. MCMS-I-19G01).
Corresponding Authors:  Xianbin Liu     E-mail:  xbliu@nuaa.edu.cn

Cite this article: 

Qing Yu(虞晴) and Xianbin Liu(刘先斌) A new simplified ordered upwind method for calculating quasi-potential 2022 Chin. Phys. B 31 010502

[1] Freidlin M I and Wentzell A D 2012 Random Perturbations of Dynamical Systems 3nd edn (Berlin: Springer) pp. 85-114
[2] Nolting B C and Abbott K C 2016 Ecology 97 850
[3] Zhou J X, Aliyu M D S, Aurell E and Huang S 2012 J. R. Soc. Interface 9 3539
[4] Cameron M 2012 Physica D 241 1532
[5] Chen Z, Zhu J and Liu X 2019 Nonlinear Dynam. 96 2293
[6] Chen Z, Zhu J and Liu X 2017 Proc. R. Soc. A 473 20170058
[7] Khovanov I A, Polovinkin A V, Luchinsky D G and Mcclintock P V E 2013 Phys. Rev. E 87 032116
[8] Brackston R D, Wynn A and Stumpf M P H 2018 Phys. Rev. E 98 022136
[9] Yang S, Potter S F and Cameron M K 2018 J. Comput. Phys. 379 325
[10] Dahiya D and Cameron M 2018 J. Sci. Comput. 75 1351
[11] Daisy D and Maria C 2018 Physica D 382-383 33
[12] Sethian J A and Vladimirsky A 2001 Proc. Natl. Acad. Sci. USA 98 11069
[13] Sethian J A and Vladimirsky A 2003 Siam J. Numer. Anal. 41 325
[14] Zhu W Q and Cai C Q 2002 Acta Mech. Sin. 18 551
[15] Jin Y F 2018 Chin. Phys. B 27 50501
[16] Jia Ya Y L J, Wu Dan, Liu Q and Zhan X 2004 Chin. Phys. Lett. 21 1666
[17] Guo K M and Jiang J 2014 Acta Phys. Sin. 63 190503 (in Chinese)
[18] Kamenev A and Meerson B 2008 Phys. Rev. E 77 061107
[19] Roy R V 1995 J. Appl. Mech. 62 496
[20] Dykman M I, Schwartz I B and Landsman A S 2008 Phys. Rev. Lett. 101 078101
[21] Chen Z and Liu X 2016 Phys. Lett. A 380 1953
[22] Heymann M and Vanden-Eijnden E 2008 Commun. Pure Appl. Math. 61 1052
[23] Heymann M and Vanden-Eijnden E 2008 Phys. Rev. Lett. 100 140601
[24] Dannenberg P H, Neu J C and Teitsworth S W 2014 Phys. Rev. Lett. 113 020601
[25] Grafke T and Vanden-Eijnden E 2019 Chaos 29 063118
[26] Grafke T, Schäfer T and Vanden-Eijnden E 2017 Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science (New York: Springer) pp. 17-55
[27] Ludwig D 1975 SIAM Rev. 17 605
[28] Beri S, Mannella R, Luchinsky D G, Silchenko A N and Mcclintock P V E 2005 Phys. Rev. E 72 036131
[29] Lindley B S and Schwartz I B 2013 Physica D 255 22
[30] Zhou X, Ren W and Weinan E 2008 J. Chem. Phys. 128 104111
[31] Maier R S and Stein D L 1996 J. Stat. Phys. 83 291
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[5] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[6] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[7] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[8] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[9] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[10] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[11] Nonlinear dynamics of cell migration in anisotropic microenvironment
Yanping Liu(刘艳平), Da He(何达), Yang Jiao(焦阳), Guoqiang Li(李国强), Yu Zheng(郑钰), Qihui Fan(樊琪慧), Gao Wang(王高), Jingru Yao(姚静如), Guo Chen(陈果), Silong Lou(娄四龙), and Liyu Liu(刘雳宇). Chin. Phys. B, 2021, 30(9): 090505.
[12] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[13] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[14] Stationary response of colored noise excited vibro-impact system
Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌). Chin. Phys. B, 2021, 30(6): 060501.
[15] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
No Suggested Reading articles found!