Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060502    DOI: 10.1088/1674-1056/abd9b0
GENERAL Prev   Next  

Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency

Lei Jiang(姜磊)1, Li Lai(赖莉)1, Tao Yu(蔚涛)1,†, Maokang Luo(罗懋康)1,2
1 College of Mathematics, Sichuan University, Chengdu 610064, China;
2 College of Aeronautics and Astronautics, Sichuan University, Chengdu 610064, China
Abstract  The collective behaviors of two coupled harmonic oscillators with dichotomous fluctuating frequency are investigated, including stability, synchronization, and stochastic resonance (SR). First, the synchronization condition of the system is obtained. When this condition is satisfied, the mean-field behavior is consistent with any single particle behavior in the system. On this basis, the stability condition and the exact steady-state solution of the system are derived. Comparative analysis shows that, the stability condition is stronger than the synchronization condition, that is to say, when the stability condition is satisfied, the system is both synchronous and stable. Simulation analysis indicates that increasing the coupling strength will reduce the synchronization time. In weak coupling region, there is an optimal coupling strength that maximizes the output amplitude gain (OAG), thus the coupling-induced SR behavior occurs. In strong coupling region, the two particles are bounded as a whole, so that the coupling effect gradually disappears.
Keywords:  coupled harmonic oscillators      dichotomous fluctuating frequency      synchronization      stability      stochastic resonance  
Received:  10 November 2020      Revised:  03 January 2021      Accepted manuscript online:  08 January 2021
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the National Natural Science Foundation of China for the Youth (Grant Nos. 11501385 and 11801385).
Corresponding Authors:  Tao Yu     E-mail:  scuyutao@163.com

Cite this article: 

Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康) Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency 2021 Chin. Phys. B 30 060502

[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 L453
[2] Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus 34 10
[3] Nicolis C 1982 Tellus 34 1
[4] Gammaitoni L, Ha${\rm{\ddot n}}$ggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[5] Ha${\rm{\ddot n}}$ggi P, Jung P, Zerbe C and Moss F 1993 J. Stat. Phys. 70 25
[6] McNamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854
[7] Fox R F 1989 Phys. Rev. A 39 4148
[8] Gang H, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett. 71 807
[9] Tessone C J, Mirasso C R, Toral R and Gunton J D 2006 Phys. Rev. Lett. 97 194101
[10] Atsumi Y, Hata H and Nakao H 2013 Phys. Rev. E 88 052806
[11] Tang Y, Zou W, Lu J and Kurths J 2012 Phys. Rev. E 85 046207
[12] Pikovsky A, Zaikin A and de la Casa M A 2002 Phys. Rev. Lett. 88 050601
[13] Cubero D 2008 Phys. Rev. E 77 021112
[14] Li J H 2002 Phys. Rev. E 66 031104
[15] Gitterman M 2005 Physica A 352 309
[16] Li J H and Han Y X 2006 Phys. Rev. E 74 051115
[17] Li J H and Han Y X 2007 Commun. Theor. Phys. 47 672
[18] Jiang S, Guo F, Zhou Y and Gu T 2007 Physica A 375 483
[19] Li J H 2011 Chaos 21 043115
[20] He G T, Tian Y and Wang Y 2013 J. Stat. Mech. 9 26
[21] He G T, Luo R Z and Luo M K 2013 Phys. Scr. 88 065009
[22] Yu T, Zhang L and Luo M K 2013 Phys. Scr. 88 045008
[23] He G T, Tian Y and Luo M K 2014 J. Stat. Mech. 2014 P05018
[24] Zhong S C, Ma H, Peng H and Zhang L 2015 Nonlinear Dyn. 82 535
[25] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1
[26] Sauga A, Mankin R and Ainsaar A 2012 AIP Conf. Proc. 1487 224
[27] Lang R L, Yang L, Qin H L and Di G H 2012 Nonlinear Dyn. 69 1423
[28] Mankin R, Laas K, Laas T and Reiter E 2008 Phys. Rev. E 78 031120
[29] Soika R, Mankin R and Ainsaar A 2010 Phys. Rev. E 81 011141
[30] Laas K, Mankin R and Rekker A 2009 Phys. Rev. E 79 051128
[31] Yang B, Zhang X, Zhang L and Luo M K 2016 Phys. Rev. E 94 022119
[32] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[33] Nicolis C and Nicolis G 2017 Phys. Rev. E 96 042214
[34] Droste F and Lindner B 2014 Biol. Cybern. 108 825
[35] Reimann P and Elston T C 1996 Phys. Rev. Lett. 77 5328
[36] Si M, Conrad N, Shin S, Gu J, Zhang J, Alam M and Ye P 2015 IEEE Trans. Electron Dev. 62 3508
[37] Van Den Broeck C 1983 J. Stat. Phys. 31 467
[38] Vishwamittar, Batra P and Chopra R 2021 Physica A 561 125148
[39] Wojciech S and Dariusz W 2020 Commun. Nonlinear Sci. Numer. Simulat. 83 105099
[40] Emelyanov Y P, Emelyanov V V and Ryskin N M 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3778
[41] Shapiro V E and Loginov V M 1978 Physica A 91 563
[42] Dorf R C and Bishop R H 2010 Modern Control Systems, 12th edn. (Pearson: Prentice Hall)
[43] Fulinski A 1993 Phys. Lett. A 180 94
[44] Robertson B and Astumian R D 1991 J. Chem. Phys. 94 7414
[45] Kubo R 1963 J. Math. Phys 4 174
[46] Berdichevsky V and Gitterman M 1996 Europhys. Lett 36 161
[47] Jiang S Q, Hou M J, Jia C H, He J R and Gu T X 2009 Chin. Phys. B 18 2667
[48] Astumian R D and Bier M 1994 Phys. Rev. Lett. 72 1766
[49] Li J H and Huang Z Q 1998 Phys. Rev. E 57 3917
[50] Bier M 1997 Contemp. Phys. 38 371
[51] Li J H, Chen Q H and Zhou X F 2010 Phys. Rev. E 81 041104
[52] Wang Q, Perc M, Duan Z and Chen G 2009 Chaos 19 023112
[53] Hendricks A G, Epureanu B I and Meyhofer E 2009 Phys. Rev. E 79 031929
[54] Stukalin E B, Phillips III H and Kolomeisky A B 2005 Phys. Rev. Lett. 94 238101
[55] Kim C, Lee E K and Talkner P 2006 Phys. Rev. E 73 026101
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[4] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[5] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[6] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[7] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[8] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[9] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[10] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[11] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[12] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[13] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[14] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[15] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
No Suggested Reading articles found!