Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊)1, Li Lai(赖莉)1, Tao Yu(蔚涛)1,†, Maokang Luo(罗懋康)1,2
1 College of Mathematics, Sichuan University, Chengdu 610064, China; 2 College of Aeronautics and Astronautics, Sichuan University, Chengdu 610064, China
Abstract The collective behaviors of two coupled harmonic oscillators with dichotomous fluctuating frequency are investigated, including stability, synchronization, and stochastic resonance (SR). First, the synchronization condition of the system is obtained. When this condition is satisfied, the mean-field behavior is consistent with any single particle behavior in the system. On this basis, the stability condition and the exact steady-state solution of the system are derived. Comparative analysis shows that, the stability condition is stronger than the synchronization condition, that is to say, when the stability condition is satisfied, the system is both synchronous and stable. Simulation analysis indicates that increasing the coupling strength will reduce the synchronization time. In weak coupling region, there is an optimal coupling strength that maximizes the output amplitude gain (OAG), thus the coupling-induced SR behavior occurs. In strong coupling region, the two particles are bounded as a whole, so that the coupling effect gradually disappears.
(Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)
Fund: Project supported by the National Natural Science Foundation of China for the Youth (Grant Nos. 11501385 and 11801385).
Corresponding Authors:
Tao Yu
E-mail: scuyutao@163.com
Cite this article:
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康) Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency 2021 Chin. Phys. B 30 060502
[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A14 L453 [2] Benzi R, Parisi G, Sutera A and Vulpiani A 1982 Tellus34 10 [3] Nicolis C 1982 Tellus34 1 [4] Gammaitoni L, Haggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys.70 223 [5] Haggi P, Jung P, Zerbe C and Moss F 1993 J. Stat. Phys.70 25 [6] McNamara B and Wiesenfeld K 1989 Phys. Rev. A39 4854 [7] Fox R F 1989 Phys. Rev. A39 4148 [8] Gang H, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett.71 807 [9] Tessone C J, Mirasso C R, Toral R and Gunton J D 2006 Phys. Rev. Lett.97 194101 [10] Atsumi Y, Hata H and Nakao H 2013 Phys. Rev. E88 052806 [11] Tang Y, Zou W, Lu J and Kurths J 2012 Phys. Rev. E85 046207 [12] Pikovsky A, Zaikin A and de la Casa M A 2002 Phys. Rev. Lett.88 050601 [13] Cubero D 2008 Phys. Rev. E77 021112 [14] Li J H 2002 Phys. Rev. E66 031104 [15] Gitterman M 2005 Physica A352 309 [16] Li J H and Han Y X 2006 Phys. Rev. E74 051115 [17] Li J H and Han Y X 2007 Commun. Theor. Phys.47 672 [18] Jiang S, Guo F, Zhou Y and Gu T 2007 Physica A375 483 [19] Li J H 2011 Chaos21 043115 [20] He G T, Tian Y and Wang Y 2013 J. Stat. Mech.9 26 [21] He G T, Luo R Z and Luo M K 2013 Phys. Scr.88 065009 [22] Yu T, Zhang L and Luo M K 2013 Phys. Scr.88 045008 [23] He G T, Tian Y and Luo M K 2014 J. Stat. Mech.2014 P05018 [24] Zhong S C, Ma H, Peng H and Zhang L 2015 Nonlinear Dyn.82 535 [25] Chandrasekhar S 1943 Rev. Mod. Phys.15 1 [26] Sauga A, Mankin R and Ainsaar A 2012 AIP Conf. Proc.1487 224 [27] Lang R L, Yang L, Qin H L and Di G H 2012 Nonlinear Dyn.69 1423 [28] Mankin R, Laas K, Laas T and Reiter E 2008 Phys. Rev. E78 031120 [29] Soika R, Mankin R and Ainsaar A 2010 Phys. Rev. E81 011141 [30] Laas K, Mankin R and Rekker A 2009 Phys. Rev. E79 051128 [31] Yang B, Zhang X, Zhang L and Luo M K 2016 Phys. Rev. E94 022119 [32] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep.424 175 [33] Nicolis C and Nicolis G 2017 Phys. Rev. E96 042214 [34] Droste F and Lindner B 2014 Biol. Cybern.108 825 [35] Reimann P and Elston T C 1996 Phys. Rev. Lett.77 5328 [36] Si M, Conrad N, Shin S, Gu J, Zhang J, Alam M and Ye P 2015 IEEE Trans. Electron Dev.62 3508 [37] Van Den Broeck C 1983 J. Stat. Phys.31 467 [38] Vishwamittar, Batra P and Chopra R 2021 Physica A561 125148 [39] Wojciech S and Dariusz W 2020 Commun. Nonlinear Sci. Numer. Simulat.83 105099 [40] Emelyanov Y P, Emelyanov V V and Ryskin N M 2014 Commun. Nonlinear Sci. Numer. Simulat.19 3778 [41] Shapiro V E and Loginov V M 1978 Physica A91 563 [42] Dorf R C and Bishop R H 2010 Modern Control Systems, 12th edn. (Pearson: Prentice Hall) [43] Fulinski A 1993 Phys. Lett. A180 94 [44] Robertson B and Astumian R D 1991 J. Chem. Phys.94 7414 [45] Kubo R 1963 J. Math. Phys4 174 [46] Berdichevsky V and Gitterman M 1996 Europhys. Lett36 161 [47] Jiang S Q, Hou M J, Jia C H, He J R and Gu T X 2009 Chin. Phys. B18 2667 [48] Astumian R D and Bier M 1994 Phys. Rev. Lett.72 1766 [49] Li J H and Huang Z Q 1998 Phys. Rev. E57 3917 [50] Bier M 1997 Contemp. Phys.38 371 [51] Li J H, Chen Q H and Zhou X F 2010 Phys. Rev. E81 041104 [52] Wang Q, Perc M, Duan Z and Chen G 2009 Chaos19 023112 [53] Hendricks A G, Epureanu B I and Meyhofer E 2009 Phys. Rev. E79 031929 [54] Stukalin E B, Phillips III H and Kolomeisky A B 2005 Phys. Rev. Lett.94 238101 [55] Kim C, Lee E K and Talkner P 2006 Phys. Rev. E73 026101
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.