Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010501    DOI: 10.1088/1674-1056/ac0a61
GENERAL Prev   Next  

Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system

Yue Li(李月)1, Zengqiang Chen(陈增强)1, Zenghui Wang(王增会)2, and Shijian Cang(仓诗建)3,†
1 College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
2 Department of Electrical and Mining Engineering, University of South Africa, Florida 1710, South Africa;
3 Department of Product Design, Tianjin University of Science and Technology, Tianjin 300222, China
Abstract  The thermostatted system is a conservative system different from Hamiltonian systems, and has attracted much attention because of its rich and different nonlinear dynamics. We report and analyze the multiple equilibria and curve axes of the cluster-shaped conservative flows generated from a generalized thermostatted system. It is found that the cluster-shaped structure is reflected in the geometry of the Hamiltonian, such as isosurfaces and local centers, and the shapes of cluster-shaped chaotic flows and invariant tori rely on the isosurfaces determined by initial conditions, while the numbers of clusters are subject to the local centers solved by the Hessian matrix of the Hamiltonian. Moreover, the study shows that the cluster-shaped chaotic flows and invariant tori are chained together by curve axes, which are the segments of equilibrium curves of the generalized thermostatted system. Furthermore, the interesting results are vividly demonstrated by the numerical simulations.
Keywords:  multiple equilibria      curve axes      invariant tori      cluster-shaped conservative chaos  
Received:  13 April 2021      Revised:  18 May 2021      Accepted manuscript online:  11 June 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61973175 and 61873186), the South African National Research Foundation (Grant No. 132797), the South African National Research Foundation Incentive (Grant No. 114911), and the South African Eskom Tertiary Education Support Programme.
Corresponding Authors:  Shijian Cang     E-mail:  sj.cang@gmail.com

Cite this article: 

Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建) Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system 2022 Chin. Phys. B 31 010501

[1] Matsumoto T 1984 IEEE Trans. Circuits Syst. 31 1055
[2] Levien R and Tan S 1993 Am. J. Phys. 61 1038
[3] Xu H Y, Wang G L, Huang L and Lai Y C 2018 Phys. Rev. Lett. 120 124101
[4] Hillebrand M, Kalosakas G, Schwellnus A and Skokos C 2019 Phys. Rev. E 99 022213
[5] Singh J P, Roy B K and Jafari S 2018 Chaos Soliton. Fract. 106 243
[6] Zheng J and Hu H P 2020 Chin. Phys. B 29 090502
[7] Ouannas A, Khennaoui A A, Momani S, Pham V-T and El-Khazali R 2020 Chin. Phys. B 29 050504
[8] Hénon M and Heiles C 1964 Astron. J. 69 73
[9] Lakshmanan M and Sahadevan R 1993 Phys. Rep. 224 1
[10] Esser B and Schanz H 1994 Chaos Soliton. Fract. 4 2067
[11] Sáenz P J, Cristea-Platon T and Bush J W 2018 Nat. Phys. 14 315
[12] Zhang K, Chen W, Bhattacharya M and Meystre P 2010 Phys. Rev. A 81 013802
[13] Barrio R, Blesa F and Serrano S 2010 Int. J. Bifur. Chaos 20 1293
[14] Dong E Z, Li R H, Du S Z 2021 Chin. Phys. B 30 020505
[15] Li S, Cen X and Zhao Y 2017 Nonlinear Anal.-Real World Appl. 34 140
[16] Sabarathinam S and Thamilmaran K 2015 Chaos Soliton. Fract. 73 129
[17] Cang S J, Li Y, Xue W, Wang Z H and Chen Z Q 2020 Nonlinear Dyn. 99 1699
[18] Frahm K M and Shepelyansky D L 2018 Phys. Rev. E 98 032205
[19] Tuckerman M E, Liu Y, Ciccotti G and Martyna G J 2001 J. Chem. Phys. 115 1678
[20] Tapias D, Bravetti D P and Sanders D P 2017 Comput. Methods Sci. Technol. 23 11
[21] Sprott J C 2018 Comput. Methods Sci. Technol. 24 169
[22] Cang S J, Li Y, Kang Z J and Wang Z H 2020 Chaos 30 033103
[23] Cang S J, Li Y, Kang Z J and Wang Z H 2020 Chaos Soliton. Fract. 133 109651
[24] Yuan F, Wang G and Wang X 2016 Chaos 26 073107
[25] Lin Y and Wang C 2016 Electron. Lett. 52 1295
[26] Ding P F, Feng X Y and Wu C M 2020 Chin. Phys. B 29 108202
[27] Zhou L, Wang C and Zhou L 2016 Nonlinear Dyn. 85 2653
[28] Dong E Z, Wang Z, Yu X, Chen Z Q and Wang Z H 2018 Chin. Phys. B 27 010503
[29] Yu S, Lu J and Chen G 2007 IEEE Trans. Circuits Syst. I 54 2087
[30] Letellier C, Gilmore R and Jones T 2007 Phys. Rev. E 76 066204
[31] Letellier C and Aguirre L A 2012 Phys. Rev. E 85 036204
[32] Wang Z L, Cang S J, Wang Z H, Xue W and Chen Z Q 2014 Abstr. Appl. Anal. 2014 495126
[33] Cang S J, Wu A G, Wang Z L, Wang Z H and Chen Z Q 2016 Nonlinear Dyn. 83 1069
[34] Sprott J C 1994 Phys. Rev. E 50 R647
[35] Messias M and Reinol A C 2018 Nonlinear Dyn. 92 1287
[36] Cang S J, Li Y and Wang Z H 2018 Int. J. Bifur. Chaos 28 1830044
[37] Lorenz E N 1963 J. Atmos. Sci. 20 130
[38] Guckenheimer J and Holmes P 1983 Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Germany: Springer Science & Business Media) p. 39
[39] Van Der Schaft A and Jeltsema D 2014 Found. Trends Syst. Control 1 173
[40] Zhou M and Wang C 2020 Signal Process. 171 107484
[41] Cang S, Kang Z and Wang Z 2021 Nonlinear Dyn. 104 827
[42] Jafari M A, Mliki E, Akgul A, Pham V T, Kingni S T, Wang X and Jafari S 2017 Nonlinear Dyn. 88 2303
[43] Ishizaki R, Horita T and Mori H 1993 Prog. Theor. Phys. 89 947
[1] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[2] Stability and attractive basins of multiple equilibria in delayed two-neuron networks
Huang Yu-Jiao(黄玉娇), Zhang Hua-Guang(张化光), and Wang Zhan-Shan(王占山) . Chin. Phys. B, 2012, 21(7): 070701.
No Suggested Reading articles found!