|
|
Explosive synchronization in a mobile network in the presence of a positive feedback mechanism |
Dong-Jie Qian(钱冬杰)† |
Jiangsu Provincial Sensor Network Engineering Technology Research Center, Wuxi Institute of Technology, Wuxi 214121, China |
|
|
Abstract Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units. The study of explosive synchronization transition attracts considerable attention. Here, I report the explosive transition within the framework of a mobile network, while each oscillator is controlled by global-order parameters of the system. Using numerical simulation, I find that the explosive synchronization (ES) transition behavior can be controlled by simply adjusting the fraction of controlled oscillators. The influences of some parameters on explosive synchronization are studied. Moreover, due to the presence of the positive feedback mechanism, I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.
|
Received: 12 January 2021
Revised: 17 May 2021
Accepted manuscript online: 22 July 2021
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
89.75.-k
|
(Complex systems)
|
|
89.75.Hc
|
(Networks and genealogical trees)
|
|
89.75.Fb
|
(Structures and organization in complex systems)
|
|
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. 20KJB470030). |
Corresponding Authors:
Dong-Jie Qian
E-mail: 15305290302@163.com
|
Cite this article:
Dong-Jie Qian(钱冬杰) Explosive synchronization in a mobile network in the presence of a positive feedback mechanism 2022 Chin. Phys. B 31 010503
|
[1] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71 [2] Couzin I D 2018 Trends in Cognitive Sciences 22 844 [3] Buzsáki G and Draguhn A 2004 Science 304 1926 [4] Zhang J Q, Huang S F, Pang S T, et al. 2015 Chin. Rev. Lett. 32 9 [5] Ma S F, Bi H J, Zou Y, et al. 2015 Frontiers of Physics 10 343 [6] Shirali N and Jabbedari S 2013 Appl. Math. Mode. 37 10107 [7] McPherson M, Smith-Lovin L and Cook J M 2001 Annu. Rev. Sociol. 27 415 [8] Francisco A R, Thomas P K D M, Peng J, et al. 2016 Phys. Rep. 610 1 [9] Khanra P, Kundu P, Hens C, et al. 2018 Phys. Rev. E 98 052315 [10] Chowdhury S N, Majhi S, Ozer M, et al. 2019 New J. Phys. 21 073048 [11] Dai X, Li X, Gutiéérrez R, et al. 2020 Chaos Solitons and Fractals 132 109589 [12] Fujiwara N, Kurths J and Diaz-Guilera A 2011 Phys. Rev. E 83 025101 [13] Fan H, Lai Y C and Wang X 2018 Phys. Rev. E 98 012212 [14] Antonioni A and Cardillo A 2017 Phys. Rev. Lett. 118 238301 [15] Kalloniatis A C and Brede M 2019 Phys. Rev. E 99 032303 [16] Zhang X, Hu X, Kurths J, et al. 2013 Phys. Rev. E 88 010802 [17] Zhang X, Boccaletti S, Guan S, et al. 2015 Phys. Rev. Lett. 114 038701 [18] Jalan S, Kumar A and Leyva I 2019 Chaos 29 041102 [19] Leyva I, Sendi?na-Nadal I, Almendral J A, et al. 2013 Phys. Rev. E 88 042808 [20] Kachhvah A D and Jalan S 2019 New J. Phys. 21 015006 [21] Gomez-Gardenes J, Gomez S, Arenas A, et al. 2011 Phys. Rev. Lett. 106 128701 [22] Jin Y L, Yao L, Guo W S, et al. 2019 Chin. Phys. B 28 038701 [23] Liu Y L, Yu X M and Hao Y H 2015 Chin. Phys. Lett. 32 110503 [24] Peron T K D M and Rodrigues F A 2012 Phys. Rev. E 86 016102 [25] Tanaka H A, Lichtenberg A J and Oishi S 1997 Phys. Rev. Lett. 78 2104 [26] Sebastian Skardal P and Arenas A 2014 Phys. Rev. E 89 062811 [27] Soriano-Pa?nos D, Guo Q, Latora V, et al. 2019 Phys. Rev. E 99 062311 [28] Zhu J D 2013 Phys. Lett. A 377 2939 [29] Chandra S, Girvan M and Ott E 2019 Phys. Rev. X 99 011002 [30] Dai X F, Li X L, Guo H, et al. 2020 Phys. Rev. Lett. 125 194101 [31] Morris R G M 1999 Brain Res. Bull. 50 437 [32] Petrungaro G, Uriu K and Morelli L G 2019 Phys. Rev. E 99 062207 [33] Sharma A 2019 Phys. Lett. A 383 2051 [34] Uriu K, Ares S, Oates A C, et al. 2013 Phys. Rev. E 87 032911 [35] Fujiwara N, Kurths J and Diaz-Guilera A 2016 Chaos 26 094824 [36] Sivrikaya F and Yener B 2004 IEEE Network 18 45 [37] Dai X F, Li X L, Gutiérrez R, et al. 2020 Chaos Solitons and Fractals 132 109589 [38] Dall J and Christensen M 2002 Phys. Rev. E 66 016121 [39] Dumas G, Nadel J, Soussignan R, et al. 2010 PLoS One 5 e12166 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|