Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010503    DOI: 10.1088/1674-1056/ac16d3
GENERAL Prev   Next  

Explosive synchronization in a mobile network in the presence of a positive feedback mechanism

Dong-Jie Qian(钱冬杰)
Jiangsu Provincial Sensor Network Engineering Technology Research Center, Wuxi Institute of Technology, Wuxi 214121, China
Abstract  Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units. The study of explosive synchronization transition attracts considerable attention. Here, I report the explosive transition within the framework of a mobile network, while each oscillator is controlled by global-order parameters of the system. Using numerical simulation, I find that the explosive synchronization (ES) transition behavior can be controlled by simply adjusting the fraction of controlled oscillators. The influences of some parameters on explosive synchronization are studied. Moreover, due to the presence of the positive feedback mechanism, I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.
Keywords:  complex network      explosive synchronization      positive feedback      mobile agent  
Received:  12 January 2021      Revised:  17 May 2021      Accepted manuscript online:  22 July 2021
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. 20KJB470030).
Corresponding Authors:  Dong-Jie Qian     E-mail:  15305290302@163.com

Cite this article: 

Dong-Jie Qian(钱冬杰) Explosive synchronization in a mobile network in the presence of a positive feedback mechanism 2022 Chin. Phys. B 31 010503

[1] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[2] Couzin I D 2018 Trends in Cognitive Sciences 22 844
[3] Buzsáki G and Draguhn A 2004 Science 304 1926
[4] Zhang J Q, Huang S F, Pang S T, et al. 2015 Chin. Rev. Lett. 32 9
[5] Ma S F, Bi H J, Zou Y, et al. 2015 Frontiers of Physics 10 343
[6] Shirali N and Jabbedari S 2013 Appl. Math. Mode. 37 10107
[7] McPherson M, Smith-Lovin L and Cook J M 2001 Annu. Rev. Sociol. 27 415
[8] Francisco A R, Thomas P K D M, Peng J, et al. 2016 Phys. Rep. 610 1
[9] Khanra P, Kundu P, Hens C, et al. 2018 Phys. Rev. E 98 052315
[10] Chowdhury S N, Majhi S, Ozer M, et al. 2019 New J. Phys. 21 073048
[11] Dai X, Li X, Gutiéérrez R, et al. 2020 Chaos Solitons and Fractals 132 109589
[12] Fujiwara N, Kurths J and Diaz-Guilera A 2011 Phys. Rev. E 83 025101
[13] Fan H, Lai Y C and Wang X 2018 Phys. Rev. E 98 012212
[14] Antonioni A and Cardillo A 2017 Phys. Rev. Lett. 118 238301
[15] Kalloniatis A C and Brede M 2019 Phys. Rev. E 99 032303
[16] Zhang X, Hu X, Kurths J, et al. 2013 Phys. Rev. E 88 010802
[17] Zhang X, Boccaletti S, Guan S, et al. 2015 Phys. Rev. Lett. 114 038701
[18] Jalan S, Kumar A and Leyva I 2019 Chaos 29 041102
[19] Leyva I, Sendi?na-Nadal I, Almendral J A, et al. 2013 Phys. Rev. E 88 042808
[20] Kachhvah A D and Jalan S 2019 New J. Phys. 21 015006
[21] Gomez-Gardenes J, Gomez S, Arenas A, et al. 2011 Phys. Rev. Lett. 106 128701
[22] Jin Y L, Yao L, Guo W S, et al. 2019 Chin. Phys. B 28 038701
[23] Liu Y L, Yu X M and Hao Y H 2015 Chin. Phys. Lett. 32 110503
[24] Peron T K D M and Rodrigues F A 2012 Phys. Rev. E 86 016102
[25] Tanaka H A, Lichtenberg A J and Oishi S 1997 Phys. Rev. Lett. 78 2104
[26] Sebastian Skardal P and Arenas A 2014 Phys. Rev. E 89 062811
[27] Soriano-Pa?nos D, Guo Q, Latora V, et al. 2019 Phys. Rev. E 99 062311
[28] Zhu J D 2013 Phys. Lett. A 377 2939
[29] Chandra S, Girvan M and Ott E 2019 Phys. Rev. X 99 011002
[30] Dai X F, Li X L, Guo H, et al. 2020 Phys. Rev. Lett. 125 194101
[31] Morris R G M 1999 Brain Res. Bull. 50 437
[32] Petrungaro G, Uriu K and Morelli L G 2019 Phys. Rev. E 99 062207
[33] Sharma A 2019 Phys. Lett. A 383 2051
[34] Uriu K, Ares S, Oates A C, et al. 2013 Phys. Rev. E 87 032911
[35] Fujiwara N, Kurths J and Diaz-Guilera A 2016 Chaos 26 094824
[36] Sivrikaya F and Yener B 2004 IEEE Network 18 45
[37] Dai X F, Li X L, Gutiérrez R, et al. 2020 Chaos Solitons and Fractals 132 109589
[38] Dall J and Christensen M 2002 Phys. Rev. E 66 016121
[39] Dumas G, Nadel J, Soussignan R, et al. 2010 PLoS One 5 e12166
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[10] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[11] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[12] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[13] Explosive synchronization of multi-layer complex networks based on inter-layer star network connection
Yan-Liang Jin(金彦亮), Run-Zhu Guo(郭润珠), Xiao-Qi Yu(于晓琪), and Li-Quan Shen(沈礼权). Chin. Phys. B, 2021, 30(12): 120505.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!