Abstract The topological valley transport, realized in phononic crystals, has aroused tremendous interest in these years. Many previous researches have further promoted the development of this transport phenomenon. Crucially, the bandwidth of the valley-projected edge mode has been an essential research topic. As is well known, the broadband will improve the adaptability of the acoustic edge-states, which will be more conducive to the transmission of information. Therefore, in this paper, we present a composite structure, composed of the atoms with different shapes forming a hexagonal lattice, which can achieve larger bandwidth than a single structure. Meanwhile, the results demonstrate that the topological protected edge states are also observed in our structure. Furthermore, the backscattering suppressions from associated valley-protected edge states under certain perturbations have also been investigated and demonstrated. Our work can provide a new idea for designing acoustic devices based on valley degree of freedom.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775050) and the Fundamental Research Funds for the Central Universities, China (Grant No. PA2019GDZC0098).
Hong-Yong Mao(毛鸿勇), Fu-Jia Chen(陈福家), Kai Guo(郭凯), and Zhong-Yi Guo(郭忠义) Broadband topological valley-projected edge-states transport in composite structure phononic crystal 2021 Chin. Phys. B 30 084302
[1] Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett.45 494 [2] Thouless D J, Kohmoto M, Nightingale M P and Nijs M den 1982 Phys. Rev. Lett.49 405 [3] Arbab A I 2013 Chin. Phys. B21 127301 [4] Tarkhanyan R H and Uzunoglu N K 2000 PIER29 321 [5] Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature461 772 [6] Wang P, Lu L and Katia Bertoldi 2015 Phys. Rev. Lett.115 104302 [7] Nasha L M, Klecknera D, Reada A, Vitellib V, Turnerc A M and Irvine W T M 2015 Proc. Natl. Acad. Sci. USA112 14495 [8] Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D and Zhang B L 2015 Phys. Rev. Lett.114 114301 [9] Khanikaev A B, Fleury R, Mousavi S H and Alu A 2015 Nat. Commun.6 8260 [10] Chen Z G and Wu Y 2016 Phys. Rev. Appl.5 054021 [11] Xu N, He C, Sun X C, Liu X P, Lu M H, Feng L and Chen Y F 2015 New J. Phys.17 053016 [12] Mousavi S H, Khanikaev A B and Wang Z 2015 Nat. Commun.6 8682 [13] Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J and Liu X J 2017 Phys. Rev. Lett.118 084303 [14] Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P and Chen Y F 2018 Nat. Commun.9 3072 [15] Susstrunk R and Huber S D 2015 Science349 47 [16] Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H and Zhu X F 2016 Nat. Commun.7 13368 [17] Rehman M Ur and Abid A A 2017 Chin. Phys. B26 127304 [18] He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P and Chen Y F 2016 Nat. Phys.12 1124 [19] Lu J Y, Qiu C Y, Ke M Z and Liu Z Y 2016 Phys. Rev. Lett.116 093901 [20] Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F and Liu Z Y 2017 Nat. Phys.13 369 [21] Raj Kumar P and Massimo R 2017 New J. Phys.19 025001 [22] Liu T W and Fabio S 2018 Phys. Rev. Appl.9 014001 [23] Zhu H F, Liu T W and Fabio S 2018 Phys. Rev. B97 174301 [24] Yang Y H, Yang Z J and Zhang B L 2018 J. Appl. Phys.123 091713 [25] Nassar H, Yousefzadeh B, Fleury R, Ruzzene M, Alù A, Daraio C, Norris A N, Huang G L and Haberman M R 2020 Nat. Rev. Mater.5 667 [26] Huo S Y, Chen J J, Huang H B and Huang G L 2017 Sci. Rep.7 10335 [27] Javier Vila, Raj K Pal and Massimo Ruzzene 2017 Phys. Rev. B96 134307 [28] Li Y, Liu Y N and Zhang X 2020 Chin. Phys. B29 106301 [29] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett.99 236809 [30] Yao W, Xu X D and Heinz T F 2014 Nat. Phys.10 343 [31] Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J Jr, Ojeda-Aristizabal C, Bechtel H, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature520 650 [32] Zhang F, MacDonald A H and Mele E J 2013 Proc. Natl. Acad. Sci. USA110 10546 [33] Li J, Wang K, McFaul K J, Zern Z, Ren Y, Watanabe K, Taniguchi T, Qiao Z and Zhu J 2016 Nat. Nanotechnol.11 1060 [34] Shen Y Y, Qiu C Y, Cai X X, Ye L P, Lu J Y, Ke M Z and Liu Z Y 2019 Appl. Phys. Lett.114 023501 [35] Geng Z G, Peng Y G, Shen Y X, Zhao D G and Zhu X F 2018 Appl. Phys. Lett.113 033503 [36] Wang Z, Liu F K, Yu S Y, Yan S L, Lu M H, Jing Y and Chen Y F 2019 J. Appl. Phys.125 044502 [37] Mikhail I S, Wiktor W, Alexander T, Xu Y and Natalia M L 2019 Nat. Nanotechnol.14 31 [38] Barik S, Miyake H, DeGottardi W, Waks E and Hafezi M 2016 New J. Phys.18 113013 [39] Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z and Liu Z Y 2014 Phys. Rev. B89 134302 [40] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, and Geim A K 2014 Science346 448 [41] Yao W, Yang S A and Niu Q 2009 Phys. Rev. Lett.102 096801 [42] Zhang Z W, Tian Y, Cheng Y, Wei Q, Liu X J and Johan C 2018 Phys. Rev. Appl.9 034032 [43] Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Yu D J, Zheng S J and Liu J 2017 Phys. Rev. B96 094106 [44] Zhang F, Jung J, Fiete G A, Niu Q and MacDonald A H 2011 Phys. Rev. Lett.106 156801 [45] Hasan M Z and Kane C L 2010 Rev. Mod. Phys.82 3045 [46] Kane C L and Mele E J 2005 Phys. Rev. Lett.95 146802 [47] Han X Z, Peng Y G, Li L, Hu Y J, Mei C S, Zhao D G, Zhu X F and Wang X L 2019 Phys. Rev. Appl.12 014046 [48] Yu S Y, Sun X C, Ni X, Q. Wang, Yan X J, He C, Liu X P, Feng L, Lu M H and Chen Y F 2016 Nat. Mater.15 1243 [49] Gao F, Xue H R, Yang Z J, Lai K, Yu Y, Lin X, Chong Y D, Shvets G and Zhang B L 2018 Nat. Phys.14 140
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.