Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084102    DOI: 10.1088/1674-1056/abe22e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region

Ling-Xi Hu(胡灵犀)1,2, Zhi-Qiang He(何志强)1,2, Min Hu(胡旻)1,2,†, and Sheng-Gang Liu(刘盛纲)1,2
1 Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Key Laboratory of Terahertz Technology, Ministry of Education, Chengdu 610054, China
Abstract  Surface plasmon polaritons' (SPPs') frequency blue shift is observed in finite-difference time-domain (FDTD) simulation of parallel electron excitation Au bulk structure. Comparing with cold dispersion of SPPs, an obvious frequency blue shift is obtained in low confinement region excitation simulation results. Then, according to SPPs' transverse attenuation characteristics, the excited frequency mode instead of cold dispersion corresponding frequency mode matches it. Thence, this excited mode is confirmed to be SPPs' mode. As is well known the lower the frequency, the smaller the confinement factor is and the lower the excitation efficiency, the wider the bandwidth of excited SPPs is. And considering the attenuation in whole structure, the excited surface field contains attenuation signal. In a low confinement factor region, the higher the SPPs' frequency, the higher the excitation efficiency is, while broadband frequency information obtained in attenuation signal provides high frequency information in stimulation signal. Thence, in the beam-wave interaction, as the signal oscillation time increases, the frequency of the oscillation field gradually increases. Thus, compared with cold dispersion, the frequency of excited SPP is blueshifted This hypothesis is verified by monitoring the time domain signal of excited field in low and high confinement factor regions and comparing them. Then, this frequency-blue shift is confirmed to have commonality of SPPs, which is independent of SPPs' material and structure. Finally, this frequency-blue shift is confirmed in an attenuated total reflection (ATR) experiment. Owing to frequency dependence of most of SPPs' devices, such as coherent enhancement radiation and enhancement transmission devices, the frequency-blue shift presented here is of great influence in the SPPs applications.
Keywords:  surface plasmon polaritons (SPPs)      frequency-blue shift      surface plasmon resonance (SPR)      coherent enhancement radiation  
Received:  16 December 2020      Revised:  12 January 2021      Accepted manuscript online:  02 February 2021
PACS:  41.60.-m (Radiation by moving charges)  
  41.60.Bq (Cherenkov radiation)  
  41.85.-p (Beam optics)  
  11.55.Fv (Dispersion relations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0701000, 2018YFF01013001, and 2020YFA0714001) and the National Natural Science Foundation of China (Grant Nos. 61988102, 61921002, and 62071108).
Corresponding Authors:  Min Hu     E-mail:  hu_m@uestc.edu.cn

Cite this article: 

Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲) Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region 2021 Chin. Phys. B 30 084102

[1] Wood R W 1902 Phil. Mag. 18 4
[2] Fan U 1941 Opt. Soc. Am. 31 3
[3] Ritchie R H 1957 Phys. Rev. 106 5
[4] Stern E A and Ferrell R A 1960 Phys. Rev. 120 1
[5] Reather H 1988 Surface Plasmons on Smooth Surfaces (Berlin: Springer Tracts in Modern Physics) pp. 4-39
[6] Abajo F J G 2010 Rev. Mod. Phys. 82 3
[7] Pendry J B 2000 Phys. Rev. Lett. 85 18
[8] Pohl D W 2001 Near-Field Optics and the Surface Plasmon Polariton (Berlin: Topics in Applied Physics) pp. 1-13
[9] Zayats A V and Smolyaninov I I 2003 J. Opt. A, Pure Appl. Opt. 5 S16
[10] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 5721
[11] Ghaemi H F, Thio Tineke, Grupp D E, Ebbesen T W and Lezec H J 1998 Phys. Rev. B 58 11
[12] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 6950
[13] Gan F Y, Wang Y J, Sun C W, Zhang G R, Li H Y, Chen J J and Gong Q H 2017 Adv. Opt. Mater. 5 1600545
[14] Homola J, Yee S S and Gauglitz G 1999 Sensor Actuat. B: Chem. 54 1
[15] Zhong Y T, Cheng Z Q, Ma L, Wang J H, Hao Z H and Wang Q Q 2014 Chin. Phys. Lett. 31 047302
[16] Steinke N, Döring S, Wuchrer R, Kroh C, Gerlach G and Härtling T 2019 Sensor Actuat. B: Chem. 288 594
[17] Han F, Lang T T, Mao B N, Zhao C L, Kang J, Shen C Y and Wang D N 2019 Opt. Fiber Technol. 50 172
[18] LiuS G, Zhang P, Liu W H, Gong S, Zhong R B, Zhang Y X and Hu M 2012 Phys. Rev. Lett. 109 153902
[19] Gong S, Hu M, Zhong R B, Chen X X, Zhang P, Zhao T and Liu S G 2014 Opt. Express 22 16
[20] Liu S G, Zhang C, Hu M, Chen X X, Zhang P, Gong S, Zhao T and Zhong R B 2014 Appl. Phys. Lett. 104 201104
[21] Gong S, Zhong R B, Hu M, Chen X X, Zhang P, Zhao T and Liu S G 2015 Chin. Phys. B 24 077302
[22] Gong S, Hu M, Zhong R B, Zhao T, Zhang C and Liu S G 2017 Opt. Express 25 21
[23] Hu L X, Gong S, Hu M, Zhong R B, Zhao T and Liu S G 2019 Opt. Commun. 433 195
[24] Suo P F, Mao L and Xu H X 2020 Chin. Phys. Lett. 37 017801
[25] Apsimon R J, Flower P S, Freeston K A, Hallewell G D, Morris J A G, Morris J V, Palerson C N, Sharp P H, Uden C N, Davenport M, Eades J, Coyle P A, Mercer D, Danaher S, McClatchey P H, Thacker N and Thompson L F 1986 IEEE Trans. Nucl. Sci. 33 1
[26] Drude P 1960 Ann. Phys. 306 3
[27] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Saunders College Publishing) pp. 107-134
[28] Sondheimer E H 1952 Adv. Phys. 1 1
[29] Johnson P B and Christy R W 1972 Phys. Rev. B 6 12
[30] Kretschmann E J and Reather H 1968 Verlag der Zeitschrift für Naturforschung A 23 12
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[4] Fiber cladding SPR bending sensor characterized by two parameters
Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yong Wei(魏勇), Yudong Su(苏于东), Ping Wu(吴萍), Lingling Li(李玲玲), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2020, 29(12): 120701.
[5] Numerical investigation of the enhanced unidirectional surface plasmon polaritons generator
Zhang Zhi-Dong (张志东), Wang Hong-Yan (王红艳), Zhang Zhong-Yue (张中月), Wang Hui (王辉). Chin. Phys. B, 2014, 23(1): 017801.
[6] Determination of thickness and optical dispersion property of gold film using spectroscopy of surface plasmon in frequency domain
Huang Yan (黄妍), Ye Hong-An (叶红安), Li Song-Quan (李松权), Dou Yin-Feng (窦寅丰). Chin. Phys. B, 2013, 22(2): 027301.
[7] Analysis of waveguide structure for surface plasmon polariton interference
Wang Jing-Quan(王景全),Liang Hui-Min(梁慧敏),Fang Liang(方亮), Li Min(李敏),Niu Xiao-Yun(牛晓云), and Du Jing-Lei(杜惊雷) . Chin. Phys. B, 2009, 18(11): 4870-4874.
[8] The theoretic analysis of maskless surface plasmon resonant interference lithography by prism coupling
Fang Liang(方亮), Du Jing-Lei(杜惊雷), Guo Xiao-Wei(郭小伟), Wang Jing-Quan(王景全), Zhang Zhi-You(张志友), Luo Xian-Gang(罗先刚), and Du Chun-Lei(杜春雷). Chin. Phys. B, 2008, 17(7): 2499-2503.
No Suggested Reading articles found!