ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Continuous-wave Nd:KGd(WO4)2 single-longitudinal-mode laser |
Rui-Jun Lan(兰瑞君)1,†, Guang-Hua Liu(刘广华)1, Huan-Huan Min(闵欢欢)1, Tong-Yu Dai(戴通宇)2, Ying-Jie Shen(申英杰)1, Peng-Hua Mu(穆鹏华)1, Cheng Ren(任承)1, De-Zhong Cao(曹德忠)1, and Xavier Mateos3 |
1 School of Opto-electronic Information Science and Technology, Yantai University, Yantai 264005, China; 2 National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China; 3 Física i Cristal·lografia de Materials i Nanomaterials(FiCMA-FiCNA), Universitat Rovira i Virgili(URV), Campus Sescelades, c/Marcel·lí Domingo, s/n., Tarragona 43007, Spain |
|
|
Abstract A continuous-wave Nd:KGd(WO4)2 single-longitudinal-mode laser is demonstrated with Fabry-Perot etalons in a simple linear cavity. The thermal lens effect is dramatically lowered by propagating the laser beam along the ‘athermal’ direction inside the laser crystal, which is very beneficial to removing the heat generated in the mode selection process. The maximum single-longitudinal-mode output power obtained is 64.8 mW at incident pump power of 4.7 W, corresponding to an optical conversion efficiency of 1.3% and a slope efficiency of 1.7%.
|
Received: 17 January 2021
Revised: 07 February 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Pk
|
(Continuous operation)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674273 and 61805209). |
Corresponding Authors:
Rui-Jun Lan
E-mail: lanruijun1@163.com
|
Cite this article:
Rui-Jun Lan(兰瑞君), Guang-Hua Liu(刘广华), Huan-Huan Min(闵欢欢), Tong-Yu Dai(戴通宇), Ying-Jie Shen(申英杰), Peng-Hua Mu(穆鹏华), Cheng Ren(任承), De-Zhong Cao(曹德忠), and Xavier Mateos Continuous-wave Nd:KGd(WO4)2 single-longitudinal-mode laser 2021 Chin. Phys. B 30 084201
|
[1] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature 512 286 [2] The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962 [3] Su X L, Tian C X, Deng X W, Li Q, Xie C D and Peng K C 2016 Phys. Rev. Lett. 117 240503 [4] Dergachev A 2011 Opt. Express 19 6797 [5] Wu J, Ju Y L, Dai T Y, Yao B Q and Wang Y Z 2017 Opt. Express 25 27671 [6] Huang S, Wang Q, Zhang M, Chen C, Wang K, Gao M and Gao C 2020 Chin. Phys. B 29 084204 [7] Zayhowski J J and Mooradian A 1989 Opt. Lett. 14 24 [8] Chen Y J, Lin Y F, Huang J H, Gong X H, Luo Z D and Huang Y D 2019 Opt. Express 27 26080 [9] Ju Y L, Liu W, Yao B Q, Dai T Y, Wu J, Yuan J H, Wang J, Duan X M and Wang Y Z 2015 Chin. Opt. Lett. 13 111403 [10] Cong Z H, Liu Z J, Qin Z G, Zhang X Y, Wang S W, Rao H and Fu Q 2015 Appl. Opt. 54 5143 [11] Li J, Yang S H, Zhao C M, Zhang H Y and Xie W 2010 Opt. Express 18 12161 [12] Dou W, Pu S, Niu N, Qu D, Meng X, Zhao L and Zheng Q 2019 Acta Phys. Sin. 68 054202 (in Chinese) [13] Song B A, Zhao W J, Ren D M, Qu Y C, Zhang H Y, Qian L M and Hu X Y 2009 Chin. Opt. Lett. 7 805 [14] Zhu L N, Gao C Q, Wang R, Gao M W, Zheng Y and Wang Z Y 2012 Appl. Opt. 51 1616 [15] Dai T Y, Han L, Yao B Q, Ju Y L, Yu K K and Wang Y Z 2015 Opt. Laser Technol. 74 20 [16] Demidovich A A, Shkadarevich A P, Danailov M B, Apai P, Gasmi T, Gribkovskii V P, Kuzmin A N, Ryabtsev G I and Batay L E 1998 Appl. Phys. B 67 11 [17] Lubeigt W, Griffith M, Laycock L and Burns D 2009 Opt. Express 17 12057 [18] Abdolvand A, Wilcox K G, Kalkandjiev T K and Rafailov E U 2010 Opt. Express 18 2753 [19] Boulon G, Metrat G, Muhlstein N, Brenier A, Kokta M R, Kravchik L and Kalisky Y 2003 Opt. Mater. 24 377 [20] Major A, Langford N, Graf T, Burns D and Ferguson A I 2002 Opt. Lett. 27 1478 [21] Major A, Langford N, Graf T and Ferguson A I 2002 Appl. Phys. B 75 467 [22] Major A, Aitchison J S, Smith P W E, Langford N and Ferguson A I 2005 Opt. Lett. 30 421 [23] Loiko P A, Yumashev K V, Kuleshov N V and Pavlyuk A A 2012 Appl. Phys. B 106 881 [24] Mochalov I V 1997 Opt. Eng. 36 1660 [25] Filippov V V, Kuleshov N V and Bodnar I T 2007 Appl. Phys. B 87 611 [26] Biswal S, O'Connor S P and Bowman S R 2005 Appl. Opt. 44 3093 [27] Yumashev K V, Savitski V G, Kuleshov N V, Pavlyuk A A, Molotkov D D and Protasenya A L 2007 Appl. Phys. B 89 39 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|