1 School of Opto-electronic Information Science and Technology, Yantai University, Yantai 264005, China; 2 National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China; 3 Física i Cristal·lografia de Materials i Nanomaterials(FiCMA-FiCNA), Universitat Rovira i Virgili(URV), Campus Sescelades, c/Marcel·lí Domingo, s/n., Tarragona 43007, Spain
Abstract A continuous-wave Nd:KGd(WO4)2 single-longitudinal-mode laser is demonstrated with Fabry-Perot etalons in a simple linear cavity. The thermal lens effect is dramatically lowered by propagating the laser beam along the ‘athermal’ direction inside the laser crystal, which is very beneficial to removing the heat generated in the mode selection process. The maximum single-longitudinal-mode output power obtained is 64.8 mW at incident pump power of 4.7 W, corresponding to an optical conversion efficiency of 1.3% and a slope efficiency of 1.7%.
[1] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature512 286 [2] The LIGO Scientific Collaboration 2011 Nat. Phys.7 962 [3] Su X L, Tian C X, Deng X W, Li Q, Xie C D and Peng K C 2016 Phys. Rev. Lett.117 240503 [4] Dergachev A 2011 Opt. Express19 6797 [5] Wu J, Ju Y L, Dai T Y, Yao B Q and Wang Y Z 2017 Opt. Express25 27671 [6] Huang S, Wang Q, Zhang M, Chen C, Wang K, Gao M and Gao C 2020 Chin. Phys. B29 084204 [7] Zayhowski J J and Mooradian A 1989 Opt. Lett.14 24 [8] Chen Y J, Lin Y F, Huang J H, Gong X H, Luo Z D and Huang Y D 2019 Opt. Express27 26080 [9] Ju Y L, Liu W, Yao B Q, Dai T Y, Wu J, Yuan J H, Wang J, Duan X M and Wang Y Z 2015 Chin. Opt. Lett.13 111403 [10] Cong Z H, Liu Z J, Qin Z G, Zhang X Y, Wang S W, Rao H and Fu Q 2015 Appl. Opt.54 5143 [11] Li J, Yang S H, Zhao C M, Zhang H Y and Xie W 2010 Opt. Express18 12161 [12] Dou W, Pu S, Niu N, Qu D, Meng X, Zhao L and Zheng Q 2019 Acta Phys. Sin.68 054202 (in Chinese) [13] Song B A, Zhao W J, Ren D M, Qu Y C, Zhang H Y, Qian L M and Hu X Y 2009 Chin. Opt. Lett.7 805 [14] Zhu L N, Gao C Q, Wang R, Gao M W, Zheng Y and Wang Z Y 2012 Appl. Opt.51 1616 [15] Dai T Y, Han L, Yao B Q, Ju Y L, Yu K K and Wang Y Z 2015 Opt. Laser Technol.74 20 [16] Demidovich A A, Shkadarevich A P, Danailov M B, Apai P, Gasmi T, Gribkovskii V P, Kuzmin A N, Ryabtsev G I and Batay L E 1998 Appl. Phys. B67 11 [17] Lubeigt W, Griffith M, Laycock L and Burns D 2009 Opt. Express17 12057 [18] Abdolvand A, Wilcox K G, Kalkandjiev T K and Rafailov E U 2010 Opt. Express18 2753 [19] Boulon G, Metrat G, Muhlstein N, Brenier A, Kokta M R, Kravchik L and Kalisky Y 2003 Opt. Mater.24 377 [20] Major A, Langford N, Graf T, Burns D and Ferguson A I 2002 Opt. Lett.27 1478 [21] Major A, Langford N, Graf T and Ferguson A I 2002 Appl. Phys. B75 467 [22] Major A, Aitchison J S, Smith P W E, Langford N and Ferguson A I 2005 Opt. Lett.30 421 [23] Loiko P A, Yumashev K V, Kuleshov N V and Pavlyuk A A 2012 Appl. Phys. B106 881 [24] Mochalov I V 1997 Opt. Eng.36 1660 [25] Filippov V V, Kuleshov N V and Bodnar I T 2007 Appl. Phys. B87 611 [26] Biswal S, O'Connor S P and Bowman S R 2005 Appl. Opt.44 3093 [27] Yumashev K V, Savitski V G, Kuleshov N V, Pavlyuk A A, Molotkov D D and Protasenya A L 2007 Appl. Phys. B89 39
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.