Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 010502    DOI: 10.1088/1674-1056/24/1/010502
GENERAL Prev   Next  

Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system

Manal Messadia, Adel Mellita, Karim Kemihb, Malek Ghanesc
a LRE Laboratory, Jijel University, BP 98 ouled Aissa Jijel, Algeria;
b L2EI laboratory, Jijel University, BP 98 ouled Aissa Jijel, Algeria;
c ECS-ENSEA, cergy-pontoise, France, 6, avenue du Ponceau 95014, Cergy-Pontoise Cedex
Abstract  This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.
Keywords:  permanent magnet synchronous generator      chaotic system      genetic algorithm      predictive control  
Received:  14 June 2014      Revised:  27 August 2014      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Yy (Control theory)  
Fund: Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).
Corresponding Authors:  Manal Messadi     E-mail:  manal.messadi@ensea.fr

Cite this article: 

Manal Messadi, Adel Mellit, Karim Kemih, Malek Ghanes Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system 2015 Chin. Phys. B 24 010502

[1] Ashuri T, Zaaijer M B, Martins J R R A, van Bussel G J W and van Kuik G A M 2014 Renew Energ. 68 893
[2] Yan B H and Wang J Z 2010 Nonlinear Dyn. 61 819
[3] Rosen A and Sheinman Y J 1994 Wind Eng. Ind. Aerodyn. 51 287
[4] Jimenez F, Gomez-Lazaro E, Fuentes J, Molina-Garcia A and Vigueras-Rodriguez A 2013 Renew Energ. 57 27
[5] Zhu J, Ruan L and Wang L 2011 Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), August 20-23 2011, Beijing, China, p. 1
[6] Carranza O, Figueres E, Garcera G and Gonzalez-Medina R 2013 Appl. Energ. 103 522
[7] Wu F, Zhang X P and Ju P 2009 Electr. Pow. Syst. Res. 79 1661
[8] Naas B, Nezli L L, Nass B, Mahmoudi M O and Elbar M 2012 Proceedings of the International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, February 16-18,2012, Beirut, Lebanon, p. 521
[9] Hemati N 1994 IEEE Trans. Circ. Syst. I 41 40
[10] Li Z, Park J B, Joo Y H, Zhang B and Chen G 2002 IEEE Trans. Circuits Syst. I 49 383
[11] Jing Z, Yu C and Chen G R 2004 Chaos Soliton. Fract. 22 831
[12] Choi H H and Jung J W 2012 Nonlinear Dyn. 67 1717
[13] Yu J, Yu H, Chen B, Gao J and Qin Y 2012 Nonlinear Dyn. 70 1879
[14] Maeng G and Choi H H 2013 Nonlinear Dyn. 74 571
[15] Han H C 2012 Nonlinear Dyn. 69 1311
[16] Yu J, Chen B and Yu H 2012 Nonlinear Dyn. 69 1479
[17] Yu J, Shi P, Dong W, Chen B and Lin C 2014 IEEE Trans. Neur. Net. Lear.
[18] Yu J, Ma Y, Chen B and Yu H 2011 Int. J. Innov. Comput. I 7 1589
[19] Yu J, Yu H, Chen B, Gao J and Qin Y 2012 Nonlinear Dyn. 70 1879
[20] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[21] Jang M 2002 Int. J. Bifurc. Chaos 12 1437
[22] Cao Y J 2008 Chaos Soliton. Fract. 36 460
[23] Yu Y and Zhang S 2003 Chaos Soliton. Fract. 15 897
[24] LI H Y and Hu Y A 2011 Chin. Phys. Lett. 28 120508
[25] Kemih K, Benslama M, Filali S, Liu W Y and Baudrand H 2007 Int. J. Innov. Comput. I 3 1301
[26] Kemih K, Filali S, Benslama M and Kimouche M 2006 Int. J. Innov. Comput. I 2 331
[27] Kemih K and Liu W Y 2007 ICIC-EL 1 39
[30] Boukabou A, Chebbah A and Mansouri N 2008 Int. J. Bifurc. Chaos 18 587
[31] Boukabou A, Sayoud B, Boumaizaa H and Mansouri N 2009 Int. J. Bifurc. Chaos 19 3813
[32] Ushio T and Yamamoto T 1999 Phys. Lett. A 264 30
[28] Yang D D 2014 Chin. Phys. B 23 010504
[29] Zhang J B, Ma Z and Zhang G 2014 Chin. Phys. B 23 010507
[33] Boukhezzar B and Siguerdidjane H 2009 Energ. Convers. Manage. 50 885
[34] Guo Y, Zeng P, Zhu J, Li L, Deng W and Blaabjerg F 2011 Proceedings of the International Conference on Electric and Electronics (EEIC 2011), June 20-22 2011, Nanchang, China, p. 809
[35] Hou Y Y 2012 Abstr. Appl. Anal. 2012 650863
[36] Goldberg E D 1989 Genetic Algorithms in Search Optimization and Machine Learning (Boston: Addison-Wesley Professional)
[37] Kalfat A 2011 Etude et Optimisation de la Puissance Issue de la Turbine dans les Eoliennes a Vitesse Variable (Master. Dissertation) (Jijel: University of Jijel)
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[4] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[5] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[6] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[7] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[8] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[9] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[10] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[11] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[12] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[13] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[14] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[15] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
No Suggested Reading articles found!