Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 124101    DOI: 10.1088/1674-1056/24/12/124101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of ultra wideband microwave absorber effectual for objects of arbitrary shape

Gong Yuan-Xun (宫元勋)a b, Zhou Zhong-Xiang (周忠祥)a, Jiang Jian-Tang (姜建堂)a, Zhao Hong-Jie (赵宏杰)b
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Aerospace Research Institute of Special Materials and Processing Technology, Beijing 100074, China
Abstract  In this paper, we present the design of multilayer microwave absorbers comprised of CoFe alloy nano-particles and nano-flakes as fillers. The thickness of the unite layer is optimized by using the Genetic Algorithm. Efficient microwave absorptions over a wide frequency band and a range of incident angles are achieved by using multilayer absorbers. We show that the absorbers are effective not only for a planar surface but also for arbitrarily shaped objects as well.
Keywords:  multilayer absorber      ultra wideband absorption      genetic algorithm (GA)  
Received:  05 April 2015      Revised:  21 June 2015      Accepted manuscript online: 
PACS:  41.20.-q (Applied classical electromagnetism)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Corresponding Authors:  Gong Yuan-Xun     E-mail:  gyxgyy@126.com

Cite this article: 

Gong Yuan-Xun (宫元勋), Zhou Zhong-Xiang (周忠祥), Jiang Jian-Tang (姜建堂), Zhao Hong-Jie (赵宏杰) Design of ultra wideband microwave absorber effectual for objects of arbitrary shape 2015 Chin. Phys. B 24 124101

[1] Wallace J L 1993 IEEE Trans. Magn. 29 4209
[2] Kim S S, Kim S T, Ahn J M and Kim K H 2004 J. Magn. Magn. Mater. 271 39
[3] Lv R, Kang F and Gu J 2008 Appl. Phys. Lett. 93 223105
[4] Huang X G, Zhang J, Xiao S R and Chen G S 2014 Am. Ceram. Soc. 97 1363
[5] Wang T, Liu Z, Lu M, Wen B, Ouyang Q and Chen Y 2013 J. Appl. Phys. 113 024314
[6] Wen B, Wang X X, Cao W Q, Shi H L, Lu M M, Wang G, Jin H B, Wang W Z, Yuan J and Cao M S 2014 Nanoscale 6 5754
[7] Huang X G, Zhang J, Xiao S R, Sang T Y and Chen G S 2014 Mater. Lett. 124 126
[8] Ji K J, Zhao H H, Huang Z G and Dai Z D 2014 Mater. Lett. 122 244
[9] Huang X G, Zhang J, Lai M and Sang T Y 2015 J. Alloys Compd. 627 367
[10] Zhen L, Gong Y X, Jiang J T and Shao W Z 2008 J. Appl. Phys. 104 034312
[11] Kim S S, Kim S T, Yoon Y C and Lee K S 2005 J. Appl. Phys. 97 10F905
[12] Choo H, Ling H and Liang C 2008 IEEE Trans. Anten. Propag. 56 2127
[13] Cui S and Weile D S 2005 IEEE Trans. Anten. Propag. 53 3616
[14] Gong Y X, Zhen L, Jiang J T, Xu C Y and Shao W Z 2009 J. Magn. Magn. Mater. 321 3702
[15] Gong Y X, Zhen L, Jiang J T, Xu C Y and Shao W Z 2009 J. Appl. Phys. 106 064302
[16] Cui S and Weile D S 2003 IEEE Trans. Anten. Propag. 51 3249
[17] Cui S, Weile D S and Volakis J L 2006 IEEE Trans. Anten. Propag. 54 1811
[18] Zhang B S, Feng Y, Xiong J, Yang Y and Lu H X 2006 IEEE Trans. Magn. 42 1778
[19] Wang X, Gong R Z, Li P G, Liu L Y and Cheng W M 2007 Mater. Sci. Eng. A 466 178
[20] Zhang X F, Dong X L, Huang H, Lv B, Lei J P and Choi C J 2007 J. Phys. D: Appl. Phys. 40 5383
[21] Chew W C, 1990 Waves and Fields in Inhomogeneous Media (New York: Van Nostrand Reinhold)
[22] Weile D S, Michielssen E and Goldberg D E 1996 IEEE Tran. Electromag. Compat. 38 518
[23] Michielssen E, Sajer J M, Ranjithan S and Mittra R 1993 IEEE. Tran. Microwave Theory and Technique 41 1024
[1] Broadband achromatic phase retarder based on metal-multilayer dielectric grating
Na Li(李娜), Wei-Jin Kong(孔伟金), Feng Xia(夏峰), Mao-Jin Yun(云茂金). Chin. Phys. B, 2018, 27(5): 054202.
[2] Frequency selective surface structure optimized by genetic algorithm
Lu Jun(卢俊), Wang Jian-Bo (汪剑波), and Sun Guan-Cheng(孙贯成). Chin. Phys. B, 2009, 18(4): 1598-1600.
No Suggested Reading articles found!