ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Solar energy full-spectrum perfect absorption and efficient photo-thermal generation |
Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇)†, Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强)‡ |
College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China |
|
|
Abstract Designing and manufacturing cost-effective absorbers that can cover the full-spectrum of solar irradiation is still critically important for solar harvesting. Utilizing control of the lightwave reflection and transmission, metamaterials realize high absorption over a relatively wide bandwidth. Here, a truncated circular cone metasurface (TCCM) composed of alternating multiple layers of titanium (Ti) and silicon dioxide (SiO2) is presented. Enabled by the synergetic of surface plasmon resonances and Fabry-Pérot resonances, the TCCM simultaneously achieves high absorptivity (exceed 90%), and absorption broadband covers almost the entire solar irradiation spectrum. In addition, the novel absorber exhibits great photo-thermal property. By exploiting the ultrahigh melting point of Ti and SiO2, high-efficiency solar irradiation absorption and heat release have been achieved at 700℃ when the solar concentration ratio is 500 (i.e., incident light intensity at 5×105 W/m2). It is worth noting that the photo-thermal efficiency is almost unchanged when the incident angle increases from 0° to 45°. The outstanding capacity for solar harvesting and light-to-heat reported in this paper suggests that TCCM has great potential in photothermal therapies, solar desalination, and radiative cooling, etc.
|
Received: 08 May 2021
Revised: 25 May 2021
Accepted manuscript online: 29 May 2021
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804134 and 11464019) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BBEL53036). |
Corresponding Authors:
Zhengqi Liu, Guiqiang Liu
E-mail: zliu@jxnu.edu.cn;liugq@jxnu.edu.cn
|
Cite this article:
Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强) Solar energy full-spectrum perfect absorption and efficient photo-thermal generation 2021 Chin. Phys. B 30 084206
|
[1] Shin D, Kang G, Gupta P, Behera S, Lee H, Urbas A M, Park W and Kim K 2018 Adv. Opt. Mater. 6 1800317 [2] Khodasevych I E, Wang L, Mitchell A and Rosengarten G 2015 Adv. Opt. Mater. 3 852 [3] Jia Y, Ren P and Fan C 2020 Chin. Phys. B 29 104210 [4] Su V C, Chu C H, Sun G and Tsai D P 2018 Opt. Express 26 13148 [5] Wu Q N, Lan F, Tang X P and Yang Z Q 2015 Chin. Phys. Lett. 32 107801 [6] Yang J, Luo F, Kao T S, Li X, Ho G W, Teng J, Luo X and Hong M 2014 Light: Sci. Appl. 3 185 [7] Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S and Zhu J 2016 Nat. Photon. 10 393 [8] Qin F, Chen X, Yi Z, Yao W, Yang H, Tang Y, Yi Y, Li H and Yi Y 2020 Sol. Energy Mater. Sol. Cells 211 110535 [9] Zhu Y, Tang B, Yang N, Lang X, Su J and Li Z 2021 Physica E 126 114449 [10] Zhu Y, Tang B and Jiang C 2019 Appl. Phys. Express 12 032009 [11] Chen M K, Chu C H, Lin R J, Chen J W, Huang Y T, Huang T T, Kuo H Y and Tsai D P 2019 Jpn. J. Appl. Phys. 58 SK0801 [12] Fu W, Han Y, Li J, Wang H, Li H, Han K, Shen X and Cui T 2016 J. Phys. D: Appl. Phys. 49 285110 [13] Kim Y J, Yoo Y J, Kim K W, Rhee J Y, Kim Y H and Lee Y 2015 Opt. Express 23 3861 [14] Chen Y, Li X, Luo X, Maier S A and Hong M 2015 Photon. Res. 3 54 [15] Huang Y, Liu L, Pu M, Li X, Ma X and Luo X 2018 Nanoscale 10 8298 [16] Huang L J, Li J Q, Lu M Y, Chen Y Q, Zhu H J and Liu H Y 2020 Chin. Phys. B 29 014201 [17] Wang B X, Huang W Q and Wang L L 2017 RSC Adv. 7 42956 [18] Cao A L, Zhang K, Zhang J R, Liu Y and Kong W J 2020 Chin. Phys. B 29 114205 [19] Ren Y, Zhou T, Jiang C and Tang B 2021 Opt. Express 29 7666 [20] Tang B, Yang N, Huang L, Su J and Jiang C 2020 IEEE Photon. J. 12 1 [21] Shi J X, Zhang W C, Xu W, Zhu Q, Jiang X, Li D D, Yan C C and Zhang D H 2015 Chin. Phys. Lett. 32 094204 [22] Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M and Kildishev V 2014 Adv. Mater. 26 7959 [23] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901 [24] Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S and Fang N X 2012 Nano Lett. 12 1443 [25] Doiron B, Mota M, Wells M P, Bower R, Mihai A, Li Y, Cohen L F, Alford N M, Petrov P K, Oulton R F and Maier S A 2019 ACS Photon. 6 240 [26] Palik E D 1985 Handbook of Optical Constants of Solids (Boston: Academic Press) p. 189 [27] Komma J, Schwarz C, Hofmann G, Heinert D and Nawrodt R 2012 Appl. Phys. Lett. 101 041905 [28] Pustovalov V K 2016 RSC Adv. 6 81266 [29] Chen X, Chen Y, Yan M and Qiu M 2012 ACS Nano 6 2550 [30] Tittl A, Harats M G, Walter R, Yin X, Schaäferling M, Liu N, Rapaport R and Giessen H 2014 ACS Nano 8 10885 [31] Hao J, Wang J, Liu X, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104 [32] Wang Z, Zhang Z M, Quan X and Cheng P 2018 Sol. Energy 159 329 [33] Putnin T, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K, Ekgasit S, Ounnunkad K and Baba A 2019 Opto-Electron. Adv. 2 190010 [34] Zhang D and Sugioka K 2019 Opto-Electron. Adv. 2 190002 [35] Wood B, Pendry J B and Tsai D P 2006 Phys. Rev. B 74 115116 [36] Bohren C F and Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Weinheim: Wiley-VCH) [37] Zhang Z, Liang Y and Xu T 2017 Opto-Electron. Eng. 44 276 [38] Liu Z, Zhong H, Liu G, Liu X, Wang Y and Wang J 2020 Opt. Express 28 31763 [39] Chen M, He Y, Wang X and Hu Y 2018 Sol. Energy 161 17 [40] Li P, Liu B, Ni Y, Liew K K, Sze J, Chen S and Shen S 2015 Adv. Mater. 27 4585 [41] Manrique-Bedoya S, Abdul-Moqueet M, Lopez P, Gray T, Disiena M, Locker A, Kwee S, Tang L, Hood R L, Feng Y and Large N 2020 J. Phys. Chem. C 124 17172 [42] Li Y, Lin C, Wu Z, Chen Z, Chi C, Cao F, Mei D, Yan H, Tso C Y, Chao C Y and Huang B 2021 Adv. Mater. 33 2005074 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|