Abstract Distributed fiber sensors based on forward stimulated Brillouin scattering (F-SBS) have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber. However, the reported results were based on the extraction of a 1st-order local spectrum, causing the sensing distance to be restricted by pump depletion. Here, a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum, which is beneficial for improving the sensing signal-to-noise ratio (SNR) significantly, since its pulse energy penetrates into the fiber more deeply. As a proof-of-concept, distributed acoustic impedance sensing along ~1630 m fiber under moderate spatial resolution of ~20 m was demonstrated.
(Brillouin and Rayleigh scattering; other light scattering)
Fund: Project supported by the Sichuan Science and Technology Program (Grant No. 2019YJ0530), Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 18ZA0401), and the National Natural Science Foundation of China (Grant No. 61205079).
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利) Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum 2021 Chin. Phys. B 30 084205
[1] Wang S H, Ren L Y and Liu Y 2009 Acta Phys. Sin.58 3943 (in Chinese) [2] Zhang Y C, Chen W, Sun S L and Meng Z 2015 Chin. Phys. B24 094209 [3] Mu K L, Shang J M, Tang L H, Wang Z K, Yu S and Qiao Y J 2019 Chin. Phys. B28 094216 [4] Wang G, Xu L X and Gu C 2018 Chin. Phys. Lett.35 084201 [5] Shelby R M, Levenson M D and Bayer P W 1985 Phys. Rev. B.31 5244 [6] Townsend P D, Poustie A J, Hardman P J and Blow K J 1996 Opt. Lett.21 333 [7] Biryukov A S, Sukharev M E and Dianov E M 2002 Quantum Electron.32 765 [8] Quang D L, Jaouën Y, Zimmerli M, Gallion P and Thomine J B 1996 IEEE Photon. Technol. Lett.8 414 [9] Russell P St J, Culverhouse D and Farahi F 1990 Electron. Lett.26 1195 [10] Russell P St J, Culverhouse D and Farahi F 1991 IEEE J. Quantum Electron.27 836 [11] Matsui T, Nakajima K and Yamamoto F 2015 Appl. Opt.54 6093 [12] Nishizawa N, Kume S, Mori M and Goto T 1995 J. Opt. Soc. Am. B.12 1651 [13] Kang M S, Brenn A, Wiederhecker G S and Russell P St J 2008 Appl. Phys. Lett.93 131110 [14] Koehler J R, Butsch A, Euser T G, Noskov R E and Russell P St J 2013 Appl. Phys. Lett.103 221107 [15] Butsch A, Koehler J R, Noskov R E and Russell P St J 2014 Optica1 158 [16] Koehler J R, Noskov R E, Sukhorukov A A, Butsch A, Novoa D and Russell P St J 2016 APL Photonics1 056101 [17] Wiederhecker G S, Brenn A, Fragnito H L and Russell P St J 2008 Phys. Rev. Lett.100 203903 [18] Dainese P, Russell P St J, Joly N, Knight J C, Wiederhecker G S, Fragnito H L, Laude V and Khelif A 2006 Nat. Phys.2 388 [19] Dainese P, Russell P St J, Wiederhecker G S, Joly N, Fragnito H L, Laude V and Khelif A 2006 Opt. Express.14 4141 [20] Brenn A, Wiederhecker G S, Kang M S, Hundertmark H, Joly N and Russell P St J 2009 J. Opt. Soc. Am. B.26 1641 [21] Beugnot J C and Laude V 2012 Phys. Rev. B.86 224304 [22] Diamandi H H, London Y and Zadok A 2017 Optica4 289 [23] Diamandi H H, London Y, Bashan G, Bergman A and Zadok A 2018 Sci. Rep.8 9514 [24] London Y, Diamandi H H and Zadok A 2017 APL Photonics.2 041303 [25] Antman Y, Clain A, London Y and Zadok A 2016 Optica3 510 [26] Chow D M, Soto M A and Thévenaz L 2017 25th International Conference on Optical Fibre Sensors10323 1032311 [27] Hayashi N, Mizuno Y, Nakamura K, Set S Y and Yamashita S 2017 Opt. Express.25 2239 [28] Chow D M and Thévenaz L 2018 Opt. Lett.43 5467 [29] Zheng Z, Li Z, Fu X, Wang L and Wang H 2020 Opt. Lett.45 4523 [30] Bashan G, Diamandi H H, London Y, Preter E and Zadok A 2018 Nat. Commun.9 2991 [31] Diamandi H H, London Y, Bashan G and Zadok A 2019 APL Photonics4 016105 [32] Chow D M, Yang Z, Soto M A and Thévenaz L 2018 Nat. Commun.9 2990 [33] Zaslawski S, Yang Z, Wang S and Thévenaz L 2019 Seventh European Workshop on Optical Fibre Sensors11199 1119923 [34] Pang C, Hua Z, Zhou D, Zhang H, Chen L, Bao X Y and Dong Y K 2020 Optica7 176 [35] Zaslawski S, Yang Z and Thévenaz L 2021 Optica8 388 [36] Shiraki K and Ohashi M 1992 IEEE Photon. Technol. Lett.4 1177 [37] Ohashi M, Shibata N and Shiraki K 1992 Electron. Lett.28 900 [38] Tanaka Y and Ogusu K 1998 IEEE Photon. Technol. Lett.10 1769 [39] Carry E, Beugnot J C, Stiller B, Lee M W, Maillotte H and Sylvestre T 2011 Appl. Opt.50 6543 [40] Hayashi N, Suzuki K, Set S Y and Yamashita S 2017 Appl. Phys. Express.10 092501 [41] Tanaka Y and Ogusu K 1999 IEEE Photon. Technol. Lett.11 865 [42] Lin J B, Jia X H, Xu S R, Ma H L, Wu H and Wei X Y 2019 Appl. Phys. Express.12 102014 [43] Goldstein M and Thaler R M 1959 Math. Comput.13 102 [44] Alem M, Soto M A, Tur M and Thévenaz L 2017 25th Optical Fiber Sensors Conference 1
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.