INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2-YF3 |
Jie Tian(田杰)1, Xiao Cao(曹笑)1, Wudi Wang(王无敌)1, Jian Liu(刘坚)1, Jianshu Dong(董建树)1, Donghua Hu(胡冬华)1, Qingguo Wang(王庆国)1,†, Yanyan Xue(薛艳艳)1,‡, Xiaodong Xu(徐晓东)2, and Jun Xu(徐军)1 |
1 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China; 2 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China |
|
|
Abstract The 0.6 at.% Pr3+-doped CaF2-YF3 crystal was successfully grown by the temperature gradient technique (TGT). X-ray diffraction analysis showed that the grown crystal still had cubic structure. The absorption spectrum, emission spectrum, Judd-Ofelt analysis and fluorescence decay curve at room temperature were discussed. The fluorescence lifetime of Pr: CaF2-YF3 crystal was 45.46 μs, and the σem·τ of 3P0→3H6 and 3P0→3F2 transitions were calculated to be 80.92×10-20 cm2·μs and 388.7×10-20 cm2·μs, respectively. The FWHMs are 20.1 nm and 6.8 nm, which are higher than those of Pr: LiYF4, Pr: LiLuF4, Pr: LiGdF4 and Pr: BaY2F8 crystals. The results show that the Pr: CaF2-YF3 crystal is expected to achieve 605 nm orange light and 642 nm red light laser operation.
|
Received: 29 December 2020
Revised: 09 April 2021
Accepted manuscript online: 19 April 2021
|
PACS:
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
42.70.Hj
|
(Laser materials)
|
|
02.70.Hm
|
(Spectral methods)
|
|
61.50.-f
|
(Structure of bulk crystals)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805177, 61861136007, and 61621001). |
Corresponding Authors:
Qingguo Wang, Yanyan Xue
E-mail: qgwang@tongji.edu.cn;xueyanyanf@163.com
|
Cite this article:
Jie Tian(田杰), Xiao Cao(曹笑), Wudi Wang(王无敌), Jian Liu(刘坚), Jianshu Dong(董建树), Donghua Hu(胡冬华), Qingguo Wang(王庆国), Yanyan Xue(薛艳艳), Xiaodong Xu(徐晓东), and Jun Xu(徐军) Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2-YF3 2021 Chin. Phys. B 30 108101
|
[1] Weber M J, Myers J D and Blackburn D H 1981 J. Appl. Phys. 52 2944 [2] Avakyants L I, Buzhinskiǐ I M, Koryagina E I and Surkova V F 1978 Sov. J. Quantum Electron. 8 423 [3] Lei G, Anderson J E, Buchwald M I, Edwards B C and Epstein R I 1998 Phys. Rev. B 57 7673 [4] Jang K W and Meltzer R S 1995 Phys. Rev. B 52 6431 [5] BasievA T T, Karasik A Ya and Shubochkin R L 1995 J. Lumin. 64 259 [6] Dianov E M, Karasik A Ya and Shcherbakov I A 1977 Sov. J. Quantum Electron. 7 588 [7] Chase L L, Payne S A and Wilke G D 1987 J. Phys. C: Solid State Phys. 20 953 [8] Wu Y, Su L, Wang Q, Li H, Zhan Y, Jang D, Qian X, Wang C, Zheng L, Chen H, Xu J, Ryba-Romanowski W, Solarz P and Lisiecki R 2013 Laser Phys. 23 105805 [9] FitzGerald S A, Campbell J A and Sievers A J 1996 J. Non. Cryst Solids 203 165 [10] Beck W, Karasik A, Arvanitidis J, Basiev T, Flytzanis C, Chase L L, Payne S A and Wilke G D 2000 J. Lumin. 86 289 [11] Zhu P F, Zhang C M, Zhu K, Ping Y X, Song P, Sun X H, Wang F X and Yao Y 2018 Opt. Laser Technol. 100 75 [12] Gong X H, Xiong F B, Lin Y F, Tan Q G, Luo Z D and Huang Y D 2007 Mater. Res. Bulletin 42 413 [13] Wang Y, Li J F, You Z Y, Zhu Z J and Tu C Y 2010 J. Alloys Compd. 502 184 [14] Cao J F, Wang Y, Ma X H, Li J F, Zhu Z J, You Z Y, Yang F G, Sun C L, Cao T, Ji Y X and Tu C Y 2010 J. Alloys Compd. 509 185 [15] Lv Z S, Wang Y, Zhu Z J, You Z Y, Li J F, Gao S F, Wang H Y and Tu C Y 2014 Appl. Phys. B 116 83 [16] Okamoto H, Kasuga K, Hara I and Kubota Y 2009 Opt. Express 17 20227 [17] Khiari S, Velazquez M, Moncorgé R, Doualan J L, Camy P, Ferrier A and Diaf M 2008 J. Alloys Compd. 451 128 [18] Hashimoto K and Kannari F 2007 Opt. Lett. 32 2493 [19] Yu H, Qian X, Guo L, Jiang D, Wu Q, Tang F, Su L, Ju Q, Wang J and Xu J 2018 Opt. Mater. 78 88 [20] Judd B R 1962 Phys. Rev. 127 750 [21] Ofelt G S 1962 J. Chem. Phys. 37 511 [22] Babu P and Jayasankar C K 2001 Physica B 301 326 [23] W Guo, Y Lin, X Gong, Y Chen, Z Luo and Y Huang 2008 J. Phys. Chem. Solids. 69 8 [24] Li N, Xue Y Y, Li D Z, Xu X D, Wang Q G and Xu J 2019 Mater. Res. Express 6 116209 [25] Liu B, Shi J J, Wang Q G, Tang H L, Liu J F, Zhao H Y, Li D Z, Liu J, Xu X D, Wang Z S and Xu J 2018 J. Lumin. 196 76 [26] Malinowski M, Wolski R and Woliński W 1990 Solid State Commun. 74 17 [27] Yu Y, Zhu X, Zhang X, Yuan J, Yu H, Kuang F, Xiong Z, Liao J, Zhang W and Wang G 2016 Opt. Rev. 23 391 [28] Jia G, Wang H, Lu X, You Z, Li J, Zhu Z and Tu C 2007 Appl. Phys. B 90 497 [29] Aull B and Jenssen H 1982 IEEE J. Quantum Elect. 18 925 [30] Cornacchia F, Lieto Di A, Tonelli M, Richter A, Heumann E and Huber G 2008 Opt. Express 16 15932 [31] Hakim R, Damak K, Toncelli A, Fourati M and Maalej R 2013 J. Lumin. 143 233 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|