Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080303    DOI: 10.1088/1674-1056/27/8/080303
GENERAL Prev   Next  

Quantum pseudodots under the influence of external vector and scalar fields

M Eshghi1, S M Ikhdair2,3
1 Department of Physics, Imam Hossein Comprehensive University, Tehran, Iran;
2 Department of Physics, Faculty of Science, An-Najah National University, Nablus, Palestine;
3 Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey
Abstract  We study the spherical quantum pseudodots in the Schrödinger equation by using the pseudo-harmonic plus harmonic oscillator potentials considering the effect of the external electric and magnetic fields. The finite energy levels and the wave functions are calculated. Furthermore, the behavior of the essential thermodynamic quantities such as, the free energy, the mean energy, the entropy, the specific heat, the magnetization, the magnetic susceptibility, and the persistent currents are also studied by using the characteristic function. Our analytical results are found to be in good agreement with the other works. The numerical results on the energy levels as well as the thermodynamic quantities have also been given.
Keywords:  Schrödinger equation      harmonic oscillator      pseudo-harmonic potential      thermodynamic quantities      quantum pseudo-dots      characteristic function  
Received:  10 January 2018      Revised:  29 April 2018      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Corresponding Authors:  M Eshghi     E-mail:  eshgi54@gmail.com,m.eshghi@semnan.ac.ir

Cite this article: 

M Eshghi, S M Ikhdair Quantum pseudodots under the influence of external vector and scalar fields 2018 Chin. Phys. B 27 080303

[1] Flugge S 1974 Practical Quantum Mechanics (Berlin, Heidelberg, New York: Springer-Verlag)
[2] Eshghi M and Mehraban H 2016 Math. Meth. Appl. Sci. 39 1599
[3] Dong S H and Lozada-Cassou M 2004 Phys. Lett. A 330 168
[4] Jia C S, Li Y, Sun Y and Sun L T 2003 Phys. Lett. A 311 115
[5] Aydogdu O and Sever R 2010 Ann. Phys. 325 373
[6] Chen G 2004 Phys. Lett. A 326 55
[7] Ikhdair S M and Sever R 2007 J. Mol. Struc. THEOCHEM 806 155
[8] Arda A and Sever R 2012 Commun. Theor. Phys. 58 27
[9] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
[10] Rezyazchnaya T V, Bogdanovich M V, Kabanov V V, Kabanau D M, Lebiadok Y V, Parashchuk V V, Ryabtsev A G, Ryabtsev G I, Shpak P V, Shchemelev M A, Andreev I A, Kunitsyna E V, Sherstnev V V and Yakovlev Y P 2015 Semiconductor 49 980
[11] Vasko F T and Kuznetsov A V 1999 Electronic states and optical transitions
[12] Voon L C L Y and Willatzen M 2002 J. Phys.: Condens. Matter 14 13667
[13] Haug H and Koch S W 1994 Quantum Theory of the Optical and Electronic Properties
[14] Oliveria L E and Falicov L M 1986 Phys. Rev. B 34 8676
[15] Porras-Montenegro N, Perez-Merchancano S T and Latge A 1993 J. Appl. Phys. 74 7624
[16] Xie W F 2011 J. Lumin. 131 943
[17] Khordad R 2014 J. Comput. Electron 13 383
[18] Sever R, Tezcan C, Aktas M and Yesiltas O 2008 J. Math. Chem. 43 845
[19] Cetin A 2008 Phys. Lett. A 372 3852
[20] Ikhdair S M 2012 J. Mod. Phys. 3 170
[21] Frankenberg C, Meiring J F, van Weele M, Platt U and Wagner T 2005 Science 308 1010
[22] de Souza J, Oliveira N M and Ribeiro-Silva C I 2006 Eur. Phys. J. D 40 205
[23] Toutounji M 2011 J. Chem. Theory Comput. 7 1804
[24] Raigoza N, Morales A L and Duque C A 2005 Physica B 363 262
[25] Harutyunyan V A, Kazaryan E M, Kostanyan H A and Sarkisyan H A 2007 Physica E 36 114
[26] Naim Y, Vahedi J and Soltani R 2015 Opt. Quantum Electron. doi:10.1007/s11082-015-0183-5
[27] Xie W and Liang S 2011 Physica B 406 4657
[28] Margulis Vl A, Muryumin E E and Gaiduk E A 2014 J. Opt. 16 125203
[29] Yao X and Belyanin A 2013 J. Phys.: Condens. Matter 25 054203
[30] Ikhdair S M and Falaye B J 2013 Chem. Phys. 421 84
[31] Boumali A 2015 phys. scr. 90 045702
[32] Glasser M L, March N H and Nieto L M 2012 Phys. Lett. A 376 1477
[33] Reis M S and Soriano S 2013 Appl. Phys. Lett. 102 112903
[34] Santos V, Maluf R V and Almeida C A S 2014 arXiv: 1401.8051v2
[35] Ikhdair S M and Hamzavi M 2012 Physica B 407 4198
[36] Ikhdair S M, Hamzavi M and Sever R 2012 Physica B 407 4523
[37] Jahromi A S and Rezaei G 2015 Physica B 456 103
[38] Koradad R 2010 Solid State Sci. 12 1253
[39] Patria R K 1972 Statistical Mechanics (Oxford: Pergamon Press)
[40] Lee K C 1994, arXiv: cond-mat/9411040v1
[41] Ochi M 1992 Applied Probability and Stochastic Processes (John Wily & Sons)
[42] Zitkovic G 2013 Lecture 8: Characteristic functions, December 8, 2013, p. 5
[43] Yi J and Talkner P 2011 Phys. Rev. E 83 041119
[44] Talkner P, Lutz E and Hanggi P 2007 Phys. Rev. E 75 050102
[45] Talkner P and Hanggi P 2007 J. Phys. A: Math. Theor. 40 F569
[46] Dariescu M A and Dariescu C 2007 J. Phys.: Condens. Matter 19 256203
[47] Dariescu M A and Dariescu C 2007 Chaos, Solitons and Fractals 33 776
[48] Byers N and Yang C N 1961 Phys. Rev. Lett. 7 46
[49] Ibragimov G B 2003 Fizika 34 35
[50] Lee S C and Kim S W 2012 J. Korean Phys. Soc. 60 436
[51] Khordad R 2015 Mod. Phys. Lett. B 29 1550127
[1] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[2] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
[3] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[4] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[5] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[6] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[7] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[8] Above-threshold ionization of hydrogen atom in chirped laser fields
Yuan-Yuan Ni(倪园园), Song-Feng Zhao(赵松峰), Xiao-Yong Li(李小勇), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(7): 073203.
[9] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[10] Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential
Yazarloo B H, Mehraban H, Hassanabadi H. Chin. Phys. B, 2016, 25(8): 080302.
[11] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[12] Nonrelativistic Shannon information entropy for Kratzer potential
Najafizade S A, Hassanabadi H, Zarrinkamar S. Chin. Phys. B, 2016, 25(4): 040301.
[13] Quantum and semiclassical studies on photodetachment cross sections of H- in a harmonic potential
Hai-Jun Zhao(赵海军), Wei-Long Liu(刘伟龙), Meng-Li Du(杜孟利). Chin. Phys. B, 2016, 25(3): 033203.
[14] Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method
M K Tavassoly, H R Jalali. Chin. Phys. B, 2013, 22(8): 084202.
[15] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
No Suggested Reading articles found!