|
|
The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential |
H. Hassanabadi, M. Kamali |
Physics Department, Shahrood University of Technology, Shahrood, Iran P. O. Box 3619995161-316, Shahrood, Iran |
|
|
Abstract The Duffin–Kemmer–Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1+3)-dimensional space–time for spin-one particles. The exact energy eigenvalues and the eigenfunctions are obtained using the Nikiforov–Uvarov method.
|
Received: 01 December 2012
Revised: 19 March 2013
Accepted manuscript online:
|
PACS:
|
03.65.Pm
|
(Relativistic wave equations)
|
|
03.65.Ca
|
(Formalism)
|
|
98.80.Cq
|
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
|
|
Corresponding Authors:
H. Hassanabadi
E-mail: h.hasanabadi@shahroodut.ac.ir
|
Cite this article:
H. Hassanabadi, M. Kamali The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential 2013 Chin. Phys. B 22 100304
|
[1] |
Kozack R E, Clark B C, Hama S, Mishra V K, Mercer R L and Ray L 1989 Phys. Rev. C 40 2181
|
[2] |
Barrett R C and Nedjadi Y 1995 Nucl. Phys. A 585 311c
|
[3] |
Ait-Tahar S, Al-Khalili J S and Nedjadi Y 1995 Nucl. Phys. A 589 307
|
[4] |
Gribov V 1999 Eur. Phys. J. C 10 71
|
[5] |
Kanatchikov I V 2000 Rep. Math. Phys. 46 107
|
[6] |
Lunardi J T, Pimentel B M, Teixeiri R G and Valverde J S 2000 Phys. Lett. A 268 165
|
[7] |
Lunardi J T, Manzoni L A, Pimentel B M and Valverde J S 2000 Int. J. Mod. Phys. A 17 205
|
[8] |
Nedjadi Y and Barret R C 1994 J. Phys. A: Math. Gen. 27 4301
|
[9] |
Guo G, Long C, Yang Z and Qin S 2009 Can. J. Phys. 87 989
|
[10] |
Boztosun I, Karakoc M, Yasuk F and Durmus A 2006 J. Math. Phys. 47 062301
|
[11] |
Falek M and Merad M 2008 Commun. Theor. Phys. 50 587
|
[12] |
Boumali A 2007 Can. J. Phys. 85 1417
|
[13] |
Boumali A 2008 J. Math. Phys. 49 022302
|
[14] |
Merad M and Bebsaid S 2007 J. Math. Phys. 48 073515
|
[15] |
Kasri Y and Chetouani L 2008 Int. J. Theor. Phys. 47 2249
|
[16] |
Boumali A and Chetouani L 2005 Phys. Lett. A 346 261
|
[17] |
Ghose P, Samal M K and Datta A 2003 Phys. Lett. A 315 23
|
[18] |
Zarrinkamar S, Rajabi A A, Rahimov H and Hassanabadi H 2011 Mod. Phys. Lett. A 26 1621
|
[19] |
Hassanabadi H, Yazarloo B H, Zarrinkamar S and Rajabi A A 2011 Phys. Rev. C 84 064003
|
[20] |
Hassanabadi H, Molaee Z and Boumali A 2012 Found. Phys. DOI:10.1007/s10701-012-9690-4
|
[21] |
Hassanabadi H, Molaee Z, Ghominejad M, Zarrinkamar S 2012 Advances in High Energy Physics DOI:10.1155/2012/489641
|
[22] |
Molaee Z, Ghominejad M, Hassanabadi H and Zarrinkamar S 2012 Eur. Phys. J. Plus 127 116
|
[23] |
Hassanabadi H, Molaee Z and Zarrinkamar S 2012 Eur. Phys. J. C 72 11
|
[24] |
Petiau G 1936 Ph. D Thesis, University of Paris, Acad. R. Belg. Cl. Sci. Mem. Collect 8 16
|
[25] |
Duffin R J 1938 Phys. Rev. Lett. 54 1114
|
[26] |
Kemmer N 1939 Proc. Roy. Soc. A 173 91
|
[27] |
Umezawa H 1956 Quantum Field Theory (Amsterdam: North-Holland)
|
[28] |
Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|