Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100304    DOI: 10.1088/1674-1056/22/10/100304
GENERAL Prev   Next  

The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential

H. Hassanabadi, M. Kamali
Physics Department, Shahrood University of Technology, Shahrood, Iran P. O. Box 3619995161-316, Shahrood, Iran
Abstract  The Duffin–Kemmer–Petiau equation (DKP) is studied in the presence of a pseudo-harmonic oscillatory ring-shaped potential in (1+3)-dimensional space–time for spin-one particles. The exact energy eigenvalues and the eigenfunctions are obtained using the Nikiforov–Uvarov method.
Keywords:  DKP equation      pseudo-harmonic oscillatory ring-shaped potential      Nikiforov–Uvarov method      energy eigenvalues      eigenfunctions  
Received:  01 December 2012      Revised:  19 March 2013      Accepted manuscript online: 
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.Ca (Formalism)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
Corresponding Authors:  H. Hassanabadi     E-mail:  h.hasanabadi@shahroodut.ac.ir

Cite this article: 

H. Hassanabadi, M. Kamali The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential 2013 Chin. Phys. B 22 100304

[1] Kozack R E, Clark B C, Hama S, Mishra V K, Mercer R L and Ray L 1989 Phys. Rev. C 40 2181
[2] Barrett R C and Nedjadi Y 1995 Nucl. Phys. A 585 311c
[3] Ait-Tahar S, Al-Khalili J S and Nedjadi Y 1995 Nucl. Phys. A 589 307
[4] Gribov V 1999 Eur. Phys. J. C 10 71
[5] Kanatchikov I V 2000 Rep. Math. Phys. 46 107
[6] Lunardi J T, Pimentel B M, Teixeiri R G and Valverde J S 2000 Phys. Lett. A 268 165
[7] Lunardi J T, Manzoni L A, Pimentel B M and Valverde J S 2000 Int. J. Mod. Phys. A 17 205
[8] Nedjadi Y and Barret R C 1994 J. Phys. A: Math. Gen. 27 4301
[9] Guo G, Long C, Yang Z and Qin S 2009 Can. J. Phys. 87 989
[10] Boztosun I, Karakoc M, Yasuk F and Durmus A 2006 J. Math. Phys. 47 062301
[11] Falek M and Merad M 2008 Commun. Theor. Phys. 50 587
[12] Boumali A 2007 Can. J. Phys. 85 1417
[13] Boumali A 2008 J. Math. Phys. 49 022302
[14] Merad M and Bebsaid S 2007 J. Math. Phys. 48 073515
[15] Kasri Y and Chetouani L 2008 Int. J. Theor. Phys. 47 2249
[16] Boumali A and Chetouani L 2005 Phys. Lett. A 346 261
[17] Ghose P, Samal M K and Datta A 2003 Phys. Lett. A 315 23
[18] Zarrinkamar S, Rajabi A A, Rahimov H and Hassanabadi H 2011 Mod. Phys. Lett. A 26 1621
[19] Hassanabadi H, Yazarloo B H, Zarrinkamar S and Rajabi A A 2011 Phys. Rev. C 84 064003
[20] Hassanabadi H, Molaee Z and Boumali A 2012 Found. Phys. DOI:10.1007/s10701-012-9690-4
[21] Hassanabadi H, Molaee Z, Ghominejad M, Zarrinkamar S 2012 Advances in High Energy Physics DOI:10.1155/2012/489641
[22] Molaee Z, Ghominejad M, Hassanabadi H and Zarrinkamar S 2012 Eur. Phys. J. Plus 127 116
[23] Hassanabadi H, Molaee Z and Zarrinkamar S 2012 Eur. Phys. J. C 72 11
[24] Petiau G 1936 Ph. D Thesis, University of Paris, Acad. R. Belg. Cl. Sci. Mem. Collect 8 16
[25] Duffin R J 1938 Phys. Rev. Lett. 54 1114
[26] Kemmer N 1939 Proc. Roy. Soc. A 173 91
[27] Umezawa H 1956 Quantum Field Theory (Amsterdam: North-Holland)
[28] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[1] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[2] New WKB method in supersymmetry quantum mechanics
Tian Gui-Hua(田贵花) . Chin. Phys. B, 2012, 21(4): 040301.
[3] Approximate solution of the spin-one Duffin-Kemmer-Petiau (DKP) equation under a non-minimal vector Yukawa potential in (1+1)-dimensions
H. Hassanabadi, Z. Molaee. Chin. Phys. B, 2012, 21(12): 120304.
[4] Energy eigenvalues from an analytical transfer matrix method
He Ying(何英), Zhang Fan-Ming(张凡明), Yang Yan-Fang(杨艳芳), and Li Chun-Fang(李春芳). Chin. Phys. B, 2010, 19(4): 040306.
[5] Quantization rules for low dimensional quantum dots
Xu Tian (许田), Cao Zhuang-Qi (曹庄琪), Fang Jing-Huai (方靖淮). Chin. Phys. B, 2008, 17(12): 4378-4381.
No Suggested Reading articles found!