Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030401    DOI: 10.1088/1674-1056/22/3/030401
GENERAL Prev   Next  

Singularities of noncompact charged objects

M. Sharif, G. Abbas
Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
Abstract  We formulate a model of noncompact spherical charged objects in the framework of noncommutative field theory. The Einstein–Maxwell field equations are solved with charged anisotropic fluid. We choose matter and charge densities as functions of two parameters instead of defining these quantities in terms of Gaussian distribution function. It is found that the corresponding densities and the Ricci scalar are singular at origin, whereas the metric is nonsingular, indicating a spacelike singularity. The numerical solution of the horizon equation implies that there are two or one or no horizon(s) depending on the mass. We also evaluate the Hawking temperature, and find that a black hole with two horizons is evaporated to an extremal black hole with one horizon.
Keywords:  noncommutative geometry      electromagnetic field      spacetime singularity  
Received:  06 June 2012      Revised:  25 September 2012      Accepted manuscript online: 
PACS:  04.20.Cv (Fundamental problems and general formalism)  
  04.20.Dw (Singularities and cosmic censorship)  
Fund: Project supported by the Higher Education Commission of Pakistan through the Indigenous Ph.D. 5000 Fellowship Program Batch-IV.
Corresponding Authors:  M. Sharif     E-mail:  msharif.math@pu.edu.pk

Cite this article: 

M. Sharif, G. Abbas Singularities of noncompact charged objects 2013 Chin. Phys. B 22 030401

[1] Padmanabhan T 2005 Phys. Rep. 406 49
[2] Susskind L 1993 Phys. Rev. Lett. 71 2367
[3] Witten E 1996 Nucl. Phys. B 460 335
[4] Siberg N and Witten E 1999 JHEP 1999 032
[5] Snyder S H 1947 Phys. Rev. 71 38
[6] Zade S S, Patil K D and Mohod A D 2008 Chin. Phys. Lett. 25 854
[7] Nashed G G L 2007 Chin. Phys. Lett. 24 3059
[8] Doplicer S, Fredenhagen K and Robert J E 1995 Commun. Math. Phys. 172 187
[9] Guang C 2001 Chin. Phys. 10 787
[10] Nicolimi P, Smailagic A and Spallucci E 2006 Phys. Lett. B 632 547
[11] Smailagic A and Spallucci E 2003 J. Phys. A 36 467
[12] Doplicer S, Fredenhagen K and Robert J E 1995 Commun. Math. Phys. 172 187
[13] Banerjee R, Majhi R B and Modak S K 2009 Class. Quantum Grav. 26 085010
[14] Modesto L and Nicolini P 2010 Phys. Rev. D 82 104035
[15] Bastos C, Bertolami O, Dias N C and Prata J N 2009 Phys. Rev. D 80 124038
[16] Bastos C, Bertolami O, Dias N C and Prata J N 2011 Phys. Rev. D 84 024005
[17] Bertolami O and Zaro C D A 2010 Phys. Rev. D 81 025005
[18] Oh J J and Park C 2010 JHEP 1003 86
[19] Sharif M and Abbas G 2012 J. Phys. Soc. Jpn. 81 044002
[20] Sun W, Wang D, Xie N Q, Zhang R B and Zhang X 2010 Eur. Phys. J. C 69 271
[21] Castro C 2008 Phys. Lett. B 665 384
[22] Ansoldi S, Nicolimi P, Smailagic A and Spallucci E 2007 Phys. Lett. B 645 261
[1] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[2] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[3] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
[4] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[5] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[6] Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering
Feng Yang(杨丰), Yinglu Ji(纪英露), Xiao Zhang(张霄), Qingxia Fan(范庆霞), Nan Zhang(张楠), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Qiang Zhang(张强), Yanchun Wang(王艳春), Xiaochun Wu(吴晓春), Junjie Li(李俊杰), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(7): 078801.
[7] Electromagnetic field quantization and input-output relation for anisotropic magnetodielectric metamaterial
Dong Yun-Xia (董云霞), Liu Chun-Ying (刘春颖). Chin. Phys. B, 2015, 24(6): 064206.
[8] Inverse problem of pulsed eddy current field of ferromagnetic plates
Chen Xing-Le (陈兴乐), Lei Yin-Zhao (雷银照). Chin. Phys. B, 2015, 24(3): 030301.
[9] The stability of a shearing viscous star with an electromagnetic field
M. Sharif, M. Azama. Chin. Phys. B, 2013, 22(5): 050401.
[10] Characteristic parameters of electromagnetic signals from a human heart system
Liu Xin-Yuan(刘新元), Pei Liu-Qing(裴留庆), Wang Yin(王寅), Zhang Su-Ming(张素明), Gao Hong-Lei(高红蕾), and Dai Yuan-Dong(戴远东) . Chin. Phys. B, 2011, 20(4): 047401.
[11] Analytical solutions to the electromagnetic field in a cylindrical shell excited by external axial current
Wu Jing(吴静) and Xiao Chun-Yan(肖春燕). Chin. Phys. B, 2010, 19(4): 044101.
[12] Polarization singularities in near-field of Gaussian vortex beam diffracted by a circular aperture
Li Jian-Long(李建龙). Chin. Phys. B, 2010, 19(12): 124001.
[13] One-loop renormalizability of noncommutative U(1) gaugetheory with scalar fields
Huang Jia-Hui(黄家辉) and Sheng Zheng-Mao(盛正卯). Chin. Phys. B, 2010, 19(1): 010316.
[14] THz-field-induced electronic transmission step-structure for a quantum wire
Xiao Xian-Bo (肖贤波), Zhou Guang-Hui (周光辉), Yang Mou (杨谋), Li Yuan (李源), Xu Zhi-Feng (徐志峰). Chin. Phys. B, 2004, 13(9): 1531-1536.
[15] Green's function formalism in semi-infinite composites: an investigation of local field distribution
Li Chen (李琛), Gu Ying (古英), Dai Bing (戴冰), Gong Qi-Huang (龚旗煌). Chin. Phys. B, 2004, 13(11): 1951-1956.
No Suggested Reading articles found!