Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124205    DOI: 10.1088/1674-1056/19/12/124205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Atomic coherent states as energy eigenstates of a Hamiltonian describing a two-dimensional anisotropic harmonic potential in a uniform magnetic field

Meng Xiang-Guo(孟祥国)a)†, Wang Ji-Suo(王继锁) a)b), and Liang Bao-Long(梁宝龙)a)
a Department of Physics, Liaocheng University, Liaocheng 252059, China; b Department of Physics, Qufu Normal University, Qufu 273165, China
Abstract  In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states $|\tau\rangle$ in terms of the spin values of j  in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state $\langle \eta|$ representation of the state $|\tau\rangle$.
Keywords:  two-dimensional anisotropic harmonic oscillator      uniform magnetic field      atomic coherent state      entangled state representation  
Received:  02 April 2010      Revised:  16 August 2010      Accepted manuscript online: 
PACS:  02.10.Ud (Linear algebra)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574060), the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23) and the Shandong Provincal Higher Educational Science and Technology Program of China (Grant Nos. J09LA07 and J10LA15).

Cite this article: 

Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙) Atomic coherent states as energy eigenstates of a Hamiltonian describing a two-dimensional anisotropic harmonic potential in a uniform magnetic field 2010 Chin. Phys. B 19 124205

1. Arecchi F T, Courtens E, Giklmore R and Thomas H 1972 Phys. Rev.A 6 22112. Agarwal G S 1981 Phys. Rev. A 24 28893. Dowling Jonathan P, Agarwal G S and Schleich Wolfgang P 1994Phys. Rev. A 49 41014. Gerry C C and Mark P 2008 Phys. Lett. A 372 64805. Fan H Y and Chen J 2003 Euro. Phys. J. D 23 4376. Fan H Y, Li C and Jiang Z H 2004 Phys. Lett. A 327 4247. Radcliffe J M 1971 J. Phys. A: Math. Gen. 4 3138. Schwinger J 1965 Quantum Theory of Angular Momentum (New York:Academic Press)9. Fan H Y and Klauder J R 1994 Phys. Rev. A 49 70410. Fan H Y 2002 Phys. Rev. A 65 06410211. Fan H Y and Fan Y 1998 Mod. Phys. Lett. A 13 43312. Wang J S, Fan H Y and Meng X G 2010 Chin. Phys. B 19 03420613. Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A81 02560414. Hu X H, Zhang X F, Zhao D, Luo H G and Liu W M 2009 Phys. Rev. A79 02361915. Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett.101 01040216. Wu Y and Yang X X 2007 Phys Rev. Lett. 98 013601
[1] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[2] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[3] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[4] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[5] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[6] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[7] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[8] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[9] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[10] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[11] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[12] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[13] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[14] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[15] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
No Suggested Reading articles found!