Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110302    DOI: 10.1088/1674-1056/21/11/110302
GENERAL Prev   Next  

Effects of external fields on two-dimensional Klein–Gordon particle under pseudo-harmonic oscillator interaction

Sameer M. Ikhdaira, Majid Hamzavib
a Physics Department, Near East University, Nicosia 922022, Turkey;
b Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Abstract  We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein-Gordon (KG) particle subjected to equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential parameter, magnetic field strength, AB flux field, and magnetic quantum number by means of the Nikiforov-Uvarov (NU) method. The non-relativistic limit, PHO, and harmonic oscillator solutions in the existence and absence of external fields are also obtained.
Keywords:  Klein-Gordon equation      two-dimensional pseudo-harmonic oscillator (PHO) potential      magnetic and Aharonov-Bohm (AB) flux fields      Nikiforov-Uvarov method  
Received:  05 April 2012      Revised:  02 May 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
Corresponding Authors:  Majid Hamzavi     E-mail:  majid.hamzavi@gmail.com

Cite this article: 

Sameer M. Ikhdair, Majid Hamzavi Effects of external fields on two-dimensional Klein–Gordon particle under pseudo-harmonic oscillator interaction 2012 Chin. Phys. B 21 110302

[1] Goldman I I, Krivchenkov V D, Kogan V I and Golitskii V M 1961 Problems in Quantum Mechanics (London: Pergamon Press)
[2] Sage M and Goodisman J 1985 Am. J. Phys. 53 350
[3] Maitland G C, Rigby M, Smith E B and Wakeham W A 1987 Intermolecular Forces (London: Oxford University Press)
[4] Büyükkilic F, Demirhan D and Özeren S F 1992 Chem. Phys. Lett. 194 9
[5] Ikhdair S M and Sever R 2007 J. Mol. Struct.: Theochem. 806 155
[6] Sever R, Tezcan C, Aktas M and Yesiltas Ö 2007 J. Math. Chem. 43 845
[7] Ikhdair S M and Sever R 2007 Cent. Eur. J. Phys. 5 516
[8] Ikhdair S M and Sever R 2008 Int. J. Mod. Phys. C 20 361
[9] Ikhdair S M and Sever R 2008 Int. J. Mod. Phys. C 19 1425
[10] Ikhdair S M and Sever R 2008 Cent. Eur. J. Phys. 6 685
[11] Dong S H 2003 Appl. Math. Lett. 16 199
[12] Dong S H and Ma Z Q 2002 Int. J. Mod. Phys. E 11 155
[13] Wang L Y, Gu X Y, Ma Z Q and Dong S H 2002 Found. Phys. Lett. 15 569
[14] Oyewumi K J, Akinpelu F O and Agboola A D 2008 Int. J. Theor. Phys. 47 1039
[15] Chen G, Chen Z D and Lou Z M 2004 Chin. Phys. 13 279
[16] Aydogdu O and Sever R 2009 Phys. Scr. 80 015001
[17] Chen C Y, Lu F L and You Y 2012 Chin. Phys. B 21 030302
[18] Taskin F and Kocak G 2010 Chin. Phys. B 19 090314
[19] Wei G F and Chen W L 2010 Chin. Phys. B 19 090308
[20] Chen W L, Wang H Y and Li Y Y 2009 Chin. Phys. B 18 451
[21] Lu F L and Chen C Y 2010 Chin. Phys. B 19 100309
[22] Chargui Y, Chetouani L and Trabelsi A 2010 Chin. Phys. B 19 020305
[23] Zhou Y and Guo J Y 2008 Chin. Phys. B 17 380
[24] Taskin F and Kocak G 2011 Chin. Phys. B 20 070302
[25] Ikhdair S M 2012 arXiv: 1111.2442v1 [cond-mat.mes-hall]
[26] Khordad R 2010 Solid State Sciences 12 1253
[27] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhauser)
[28] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[29] Greiner W 2000 Relativistic Quantum Mechanics: Wave Equations (Berlin: Springer-Verlag)
[30] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys. Lett. A 349 87
[31] Bogachek E N and Landman U 1995 Phys. Rev. B 52 14067
[32] cetin A 2008 Phys. Lett. A 372 3852
[33] Xu Y, He S and Jia C S 2010 Phys. Scr. 81 045001
[34] Qiang W C 2004 Chin. Phys. 13 283
[35] Ikhdair S M 2012 J. Mod. Phys. 3 170
[1] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[2] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[3] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[4] Relativistic solutions for diatomic molecules subject to pseudoharmonic oscillator in arbitrary dimensions
Sami Ortakaya. Chin. Phys. B, 2013, 22(7): 070303.
[5] Spinless particles in the field of unequal scalar–vector Yukawa potentials
M. Hamzavi, S. M. Ikhdair, K. E. Thylwe. Chin. Phys. B, 2013, 22(4): 040301.
[6] Bound state solutions of d-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential
Akpan N. Ikot, Oladunjoye A. Awoga, Akaninyene D. Antia. Chin. Phys. B, 2013, 22(2): 020304.
[7] Analytical approximate solution for nonlinear space-time fractional Klein–Gordon equation
Khaled A. Gepreel, Mohamed S. Mohamed. Chin. Phys. B, 2013, 22(1): 010201.
[8] Approximate solution of the spin-one Duffin-Kemmer-Petiau (DKP) equation under a non-minimal vector Yukawa potential in (1+1)-dimensions
H. Hassanabadi, Z. Molaee. Chin. Phys. B, 2012, 21(12): 120304.
[9] Bound states of the Klein-Gordon and Dirac equations for potential V0tanh2(r/d)
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2004, 13(5): 571-574.
[10] Bound states of the Klein-Gordon equation for ring-shaped Kratzer-type potential
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2004, 13(5): 575-578.
[11] Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials
Chen Gang (陈刚), Chen Zi-Dong (陈子栋), Lou Zhi-Mei (楼智美). Chin. Phys. B, 2004, 13(3): 279-282.
[12] Explicit and exact travelling plane wave solutions of the (2+1)-dimensional Boussinesq equation
Huang Wen-Hua (黄文华), Jin Mei-Zhen (金美贞). Chin. Phys. B, 2003, 12(4): 361-364.
[13] Bound states of Klein-Gordon equation for ring-shaped harmonic oscillator scalar and vector potentials
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2003, 12(2): 136-139.
[14] Bound states of the Klein-Gordon and Dirac equations for potential $V(r)=Ar^{-2}-Br^{-1}$
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2003, 12(10): 1054-1057.
[15] Bound states of the Klein-Gordon and Dirac equations for scalar and vector harmonic oscillator potentials
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2002, 11(8): 757-759.
No Suggested Reading articles found!