Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 014208    DOI: 10.1088/1674-1056/19/1/014208
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

New representation of the multimode phase shifting operator and its application

Wang Shuai(王帅), Jiang Ji-Jian(蒋继建), Xu Shi-Min(徐世民), and Li Hong-Qi(李洪奇)
Department of Physics, Heze University, Heze 274015, China
Abstract  Based on the rotation transformation in phase space and the technique of integration within an ordered product of operators, the coherent state representation of the multimode phase shifting operator and one of its new applications in quantum mechanics are given. It is proved that the coherent state is a natural language for describing the phase shifting operator or multimode phase shifting operator. The multimode phase shifting operator is also a useful tool to solve the dynamic problems of the multimode coordinate--momentum coupled harmonic oscillators. The exact energy spectra and eigenstates of such multimode coupled harmonic oscillators can be easily obtained by using the multimode phase shifting operator.
Keywords:  phase shifting operator      coupled harmonic oscillators      energy spectrums      energy eigenstates  
Received:  15 July 2009      Revised:  04 August 2009      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A16) and the Natural Science Foundation of Heze University of Shandong Province, China (Grant No. XY09WL01).

Cite this article: 

Wang Shuai(王帅), Jiang Ji-Jian(蒋继建), Xu Shi-Min(徐世民), and Li Hong-Qi(李洪奇) New representation of the multimode phase shifting operator and its application 2010 Chin. Phys. B 19 014208

[1] Klauder R J and Skagerstam B S 1985 Coherent States---Applications in Physics and Mathematical Physics (Singapore: World Scientific Press)
[2] Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62 867
[3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[4] Glauber R J 1963 Phys. Rev. 131 2766
[5] Glauber R J and Sudarshan E C G 1968 Fundamentals of Quantum Optics (New York: Benjamin Press)
[6] Fan H Y 2003 J. Opt. B: Quantum Semiclassical Opt. 5 R147
[7] Fan H Y and Ruan T N 1984 Sci. China Ser. A: Mathematics 27 392
[8] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303
[9] Fan H Y, Zaidi H R and Glauber R J 1987 Phys. Rev. D 35 1831
[10] Wang J S and Meng X G 2008 Chin. Phys. B 17 1254
[11] Fan H Y and Lu H L 2005 Phys. Lett. A 334 132
[12] Fan H Y and Lu H L 2006 Opt. Commun. 258 51
[13] Fan H Y and Hu L Y 2007 Chin. Phys. Lett. 24 2238
[14] Leonhardt U 1997 Measuring the Quantum State of Light (Cambridge: Cambridge University Press)
[15] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley-VCH Press)
[16] Denot D, Bschorr T and Freyberger M 2006 Phys. Rev. A 73 013824
[17] Michelot F 1992 Phys. Rev. A 45 4271
[18] Feranchuk I D and Tolstik A L 1999 J. Phys. A: Math. Gen. 32 2115
[19] Lu H X, Liu K J, Pan J W and Zhang Y D 2000 Chin. Phys. 9 5
[20] Chung N N and Chew L Y 2007 Phys. Rev. A 76 032113
[21] Xu X M, Xu X L and Li H Q 2008 Int. J. Theor. Phys. 47 1654
[22] Xu X M, Xu X L, Jiang J J, Li H Q and Wang J S 2008 Chin. Phys. B 17 4369
[23] Xu X M, Xu X L, Li H Q and Wang J S 2009 Acta Phys. Sin. 58 2174
[24] Vogel K and Risken H 1989 Phys. Rev. A 40 2847
[25] Wang S, Jiang J J and Li H Q 2009 Chin. Phys. Lett. 26 060304
[1] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
No Suggested Reading articles found!