Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104401    DOI: 10.1088/1674-1056/ac041d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models

Meng-Yue Guo(郭孟月)1, Qun Han(韩群)1, Xiang-Dong Liu(刘向东)1,2,†, and Bo Zhou(周博)3
1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China;
2 College of Electrical, Energy, and Power Engineering, Yangzhou University, Yangzhou 225127, China;
3 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Abstract  Phase change materials (PCMs) are important for sustaining energy development. For the thermal performance enhancement, the composite PCM with metal foam reconstructed by the Voronoi method is investigated in this work. The lattice Boltzmann method (LBM) is used to analyze the melting process on a pore scale. The melting interface evolution and temperature contour of the composite PCM are explored and compared with those of pure PCM. Moreover, structure parameters including the pore density, porosity and irregularity are investigated comprehensively, indicating that the additive of metal foam strengthens the melting performance of PCM obviously. Compared with pure PCM, the composite PCM has quick rates of the melting front evolution and heat transfer. The heat conduction plays a great role in the whole melting process since the convection is weakened for the composite PCM. To improve the melting efficiency, a larger pore density and smaller irregularity are recommended in general. More significantly, a suitable porosity is determined based on the requirement for the balance between the melting rate and heat storage capacity in practical engineering.
Keywords:  metal foam      Voronoi      melting      heat transfer enhancement  
Received:  25 January 2021      Revised:  05 March 2021      Accepted manuscript online:  24 May 2021
PACS:  44.30.+v (Heat flow in porous media)  
  44.25.+f (Natural convection)  
  44.05.+e (Analytical and numerical techniques)  
  44.10.+i (Heat conduction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51876184, 51725602, and 51806147) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180102).
Corresponding Authors:  Xiang-Dong Liu     E-mail:  liuxd@yzu.edu.cn

Cite this article: 

Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博) Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models 2021 Chin. Phys. B 30 104401

[1] Laraib S T, Ali H M and Akram M A 2020 Therm. Sci. 24 2151
[2] Elarga H, Fantucci S, Serra V, Zecchin R and Benini E 2017 Energ. Buildings 150 546
[3] Ali H M 2020 Sol. Energy 197 163
[4] Zhang Z D, Cao Y T and Sun D K, et al. 2020 Chin. Phys. B 29 028103
[5] Song B W, Ren F, Hu H B and Huang Q G 2015 Chin. Phys. B 24 014703
[6] Rathore P K S and Shukla S K 2019 Constr. Build Mater. 225 723
[7] Chen Y P, Gao W, Zhang C B and Zhao Y J 2016 Lab Chip 16 1332
[8] Wang J, Gao W, Zhang H, Zou M H, Chen Y P and Zhao Y J 2018 Sci. Adv. 4 7392
[9] Sajawal, Rehman T and Ali H M 2019 Case Stud. Therm. Eng. 15 100543
[10] Mahdi J M, Lohrasbiet S and Davood D 2018 Int. J. Heat Mass Transfer 124 663
[11] Han Q, Wang H, Yu C and Zhang C B 2020 Appl. Therm. Eng. 176 115423
[12] Huang Y P, Yao F, Zhou B and Zhang C B 2020 Chin. Phys. B 29 054701
[13] Ali H M 2019 J. Energy Storage. 26 100986
[14] Sardari P T, Giddings D and Gillott M 2019 Energy Conv. Manag. 201 112151
[15] Zhang C B, Li J and Chen Y P 2020 Appl. Energ. 259 114102
[16] Dinesh B V S and Bhattacharya A 2019 Int. J. Heat Mass Transfer 134 866
[17] Chen Y P, Zhang C B, Shi M H and Yang Y C 2010 Aiche J. 56 2018
[18] Wu L Y, Liu L B, Han X T, Li Q W and Yang W B 2019 Chin. Phys. B 28 104702
[19] Dong X J, Hu Y F, Wu Y Y, Zhao J and Wan Z Z 2010 Chin. Phys. Lett. 27 044401
[20] Li Z, Zhang J, Wang Z, Song Y and Zhao L 2013 Numerical Heat Transfer 64 1038
[21] He Y L, Liu Q and Li Q 2019 Int. J. Heat Mass Transfer 129 160
[22] Chen Y P and Deng Z L 2017 J. Fluid Mech. 819 401
[23] Huo Y T and Rao Z H 2017 Appl. Therm. Eng. 115 1237
[24] Gao W and Chen Y P 2019 Int. J. Heat Mass Transfer 135 158
[25] Wang L, Zhao Y, Yang X, Shi B and Chai Z H 2019 Appl. Math. Model. 71 31
[26] Zhao Y, Pereira G G, Kuang S B, Chai Z H and Shi B C 2020 Appl. Math. Lett. 104 106250
[27] Lu J H, Lei H Y and Dai C S 2019 Int. J. Therm. Sci. 135 17
[28] Chen Z Q, Gao D Y and Shi J 2014 Int. J. Heat Mass Transfer 72 646
[29] Shi X, Liu S, Nie H, Lu G and Li Y 2018 Int. J. Mech. Sci. 135 215
[30] Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308
[31] Shi B C and Guo Z L 2009 Phys. Rev. E 79 016701
[32] Chai Z H, Shi B C and Guo Z L 2016 J. Sci. Comput. 69 355
[33] Ginzburg I and d'Humiéres D 2003 Phys. Rev. E 68 066614
[34] Guo Z, Zheng C and Shi B 2002 Chin. Phys. C 11 366
[35] Yue L Q, Chai Z H, Wang L and Shi B C 2021 Int. J. Heat Mass Transfer 165 120682
[36] Li L, Chen C, Mei R and Klausner J F 2014 Phys. Rev. E 89 043308
[37] Rubinstein L 1982 IMA. J. Appl. Math. 28 287
[38] Huber C, Parmigiani A, Chopard B, Manga M and Bachmann O 2008 Int. J. Heat Fluid Flow 29 1469
[39] Merrikh A A and Lage J L 2005 Int. J. Heat Mass Transfer 48 1361
[1] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[2] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[3] Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys
Hüseyin Yıldırım and Ali Kemal Garip. Chin. Phys. B, 2021, 30(10): 108201.
[4] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳). Chin. Phys. B, 2021, 30(1): 016802.
[5] A new heuristics model of simulating pedestrian dynamics based on Voronoi diagram
Xin-Sen Wu(武鑫森), Hao Yue(岳昊), Qiu-Mei Liu(刘秋梅), Xu Zhang(张旭), and Chun-Fu Shao(邵春福). Chin. Phys. B, 2021, 30(1): 018902.
[6] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[7] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[8] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[9] Crystal melting processes of propylene carbonate and 1,3-propanediol investigated by the reed-vibration mechanical spectroscopy for liquids
Li-Na Wang(王丽娜), Xing-Yu Zhao(赵兴宇), Heng-Wei Zhou(周恒为), Li Zhang(张丽), Yi-Neng Huang(黄以能). Chin. Phys. B, 2019, 28(9): 096401.
[10] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[11] Photo-induced athermal phase transitions of HgX (X= S, Se, Te) by ab initio study
Da-hua Ren(任达华), Xin-lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2016, 25(7): 076401.
[12] How to detect melting in laser heating diamond anvil cell
Liuxiang Yang(杨留响). Chin. Phys. B, 2016, 25(7): 076201.
[13] Pressure-induced solidifications of liquid sulfur below and above λ-transition
Fei Tang(唐菲), Lin-Ji Zhang(张林基), Feng-Liang Liu(刘峰良), Fei Sun(孙菲), Wen-Ge Yang(杨文革), Jun-Long Wang(王君龙), Xiu-Ru Liu(刘秀茹), Ru Shen(沈如). Chin. Phys. B, 2016, 25(4): 046102.
[14] Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations
Jin-Ping Zhang(张金平), Yang-Yang Zhang(张洋洋), Er-Ping Wang(王二萍), Cui-Ming Tang (唐翠明), Xin-Lu Cheng(程新路), Qiu-Hui Zhang(张秋慧). Chin. Phys. B, 2016, 25(3): 036102.
[15] Ab initio investigation of photoinduced non-thermal phase transition in β -cristobalite
Shi-Quan Feng(冯世全), Hua-Ping Zang(臧华平), Yong-Qiang Wang(王永强), Xin-Lu Cheng(程新路), Jin-Sheng Yue(岳金胜). Chin. Phys. B, 2016, 25(1): 016701.
No Suggested Reading articles found!