INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation |
Hai-Hong Jia(贾海洪)1,2, De-Liang Bao(包德亮)1,2, Yu-Yang Zhang(张余洋)1,2, Shi-Xuan Du(杜世萱)1,2 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Thermal stability of core-shell nanoparticles (CSNPs) is crucial to their fabrication processes, chemical and physical properties, and applications. Here we systematically investigate the structural and thermal stabilities of single Au@Ag CSNPs with different sizes and their arrays by means of all-atom molecular dynamics simulations. The formation energies of all Au@Ag CSNPs we reported are all negative, indicating that Au@Ag CSNPs are energetically favorable to be formed. For Au@Ag CSNPs with the same core size, their melting points increase with increasing shell thickness. If we keep the shell thickness unchanged, the melting points increase as the core sizes increase except for the CSNP with the smallest core size and a bilayer Ag shell. The melting points of Au@Ag CSNPs show a feature of non-monotonicity with increasing core size at a fixed NP size. Further simulations on the Au@Ag CSNP arrays with 923 atoms reveal that their melting points decrease dramatically compared with single Au@Ag CSNPs. We find that the premelting processes start from the surface region for both the single NPs and their arrays.
|
Received: 10 February 2020
Revised: 29 February 2020
Accepted manuscript online:
|
PACS:
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
Fund: Project supported by the National Key Research & Development Project of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant No. 61888102), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Beijing Nova Program of China (Grant No. Z181100006218023). |
Corresponding Authors:
Shi-Xuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱) Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation 2020 Chin. Phys. B 29 048701
|
[1] |
Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F and Nilsson A 2010 Nat. Chem. 2 454
|
[2] |
Jia X, Li J, Zhang X and Wang E 2015 Chem. Commun. 51 17417
|
[3] |
Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z and Xia Y 2010 ACS Nano 4 6725
|
[4] |
Zaleska-Medynska A, Marchelek M, Diak M and Grabowska E 2016 Adv. Colloid Interface Sci. 229 80
|
[5] |
Chong L, Wen J, Kubal J, Sen F G, Zou J, Greeley J, Chan M, Barkholtz H, Ding W and Liu D J 2018 Science 362 1276
|
[6] |
Fang H, Yang J, Wen M and Wu Q 2018 Adv. Mater. 30 1705698
|
[7] |
Jiang H L, Akita T, Ishida T, Haruta M and Xu Q 2011 J. Am. Chem. Soc. 133 1304
|
[8] |
Ding K, Cullen D A, Zhang L, Cao Z, Roy A D, Ivanov I N and Cao D 2018 Science 362 560
|
[9] |
Wong A, Liu Q, Griffin S, Nicholls A and Regalbuto J R 2017 Science 358 1427
|
[10] |
Yao Y, Huang Z, Xie P, Lacey S D, Jacob R J, Xie H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah M R, Wang C, Shahbazian-Yassar R, Li J and Hu L 2018 Science 359 1489
|
[11] |
Zhou M, Wang H, Vara M, Hood Z D, Luo M, Yang T H, Bao S, Chi M, Xiao P, Zhang Y and Xia Y 2016 J. Am. Chem. Soc. 138 12263
|
[12] |
Ren G, Shi H and Xing Y 2007 Nanotechnology 18 385604
|
[13] |
Xiao H J, Shen C M, Shi X Z, Yang S D, Tian Y, Lin S X and Gao H J 2015 Chin. Phys. B 24 078109
|
[14] |
Hutzler A, Schmutzler T, Jank M P M, Branscheid R, Unruh T, Spiecker E and Frey L 2018 Nano Lett. 18 7222
|
[15] |
Aslam U and Linic S 2017 ACS Appl. Mater. Interfaces 9 43127
|
[16] |
Kim T G, Park H J, Woo K, Jeong S, Choi Y and Lee S Y 2018 ACS Appl. Mater. Interfaces 10 1059
|
[17] |
Liu K K, Tadepalli S, Tian L and Singamaneni S 2015 Chem. Mater. 27 5261
|
[18] |
Moseley P and Curtin W A 2015 Nano Lett. 15 4089
|
[19] |
Haldar K K, Kundu S and Patra A 2014 ACS Appl. Mater. Interfaces 6 21946
|
[20] |
Binns C, Qureshi M T, Peddis D, Baker S H, Howes P B, Boatwright A, Cavill S A, Dhesi S S, Lari L, Kroger R and Langridge S 2013 Nano Lett. 13 3334
|
[21] |
Seraj S, Kunal P, Li H, Henkelman G, Humphrey S M and Werth C J 2017 ACS Catal. 7 3268
|
[22] |
Kim S M, Abdala P M, Margossian T, Hosseini D, Foppa L, Armutlulu A, van Beek W, Comas-Vives A, Coperet C and Muller C 2017 J. Am. Chem. Soc. 139 1937
|
[23] |
Luo L, Duan Z, Li H, Kim J, Henkelman G and Crooks R M 2017 J. Am. Chem. Soc. 139 5538
|
[24] |
García S, Zhang L, Piburn G W, Henkelman G and Humphrey S M 2014 ACS Nano 8 11512
|
[25] |
Schnedlitz M, Lasserus M, Meyer R, Knez D, Hofer F, Ernst W E and Hauser A W 2018 Chem. Mater. 30 1113
|
[26] |
Bonifacio C S, Carenco S, Wu C H, House S D, Bluhm H and Yang J C 2015 Chem. Mater. 27 6960
|
[27] |
Vara M, Roling L T, Wang X, Elnabawy A O, Hood Z D, Chi M, Mavrikakis M and Xia Y 2017 ACS Nano 11 4571
|
[28] |
Akbarzadeh H, Mehrjouei E, Ramezanzadeh S and Izanloo C 2017 J. Mol. Liq. 248 1078
|
[29] |
Akbarzadeh H, Mehrjouei E, Masoumi A and Sokhanvaran V 2018 J. Mol. Liq. 249 477
|
[30] |
Huang R, Shao G F, Zhang Y and Wen Y H 2017 ACS Appl. Mater. Interfaces 9 12486
|
[31] |
Li M and Cheng D 2013 J. Phys. Chem. C 117 18746
|
[32] |
Akbarzadeh H, Abbaspour M and Mehrjouei E 2016 Phys. Chem. Phys. Chem. 18 25676
|
[33] |
Akbarzadeh H, Abbaspour M and Mehrjouei E 2017 J. Mol. Liq. 242 1002
|
[34] |
Fernández-Navarro C and Mejía-Rosales S 2017 J. Phys. Chem. C 121 21658
|
[35] |
Akbarzadeh H, Mehrjouei E and Shamkhali A N 2017 J. Chem. Phys. Lett. 8 2990
|
[36] |
Wen Y H, Huang R, Li C, Zhu Z Z and Sun S G 2012 J. Mater. Chem. 22 7380
|
[37] |
Huang R, Wen Y H, Zhu Z Z and Sun S G 2016 Phys. Chem. Phys. Chem. 18 9847
|
[38] |
Huang R, Wen Y H, Zhu Z Z and Sun S G 2012 J. Phys. Chem. C 116 11837
|
[39] |
Huang R, Wen Y H, Shao G F and Sun S G 2013 J. Phys. Chem. C 117 4278
|
[40] |
Huang R, Wen Y H, Shao G F, Zhu Z Z and Sun S G 2013 J. Phys. Chem. C 117 6896
|
[41] |
Yang Z, Yang X and Xu Z 2008 J. Phys. Chem. C 112 4937
|
[42] |
Zhang J P, Zhang Y Y, Wang E P, Tang C M, Cheng X L and Zhang Q H 2016 Chin. Phys. B 25 036102
|
[43] |
Rodríguez-González B, Burrows A, Watanabe M, Kiely C J and Liz Marzán L M 2005 J. Mater. Chem. 15 1755
|
[44] |
López Lozano X, Mottet C and Weissker H C 2013 J. Phys. Chem. C 117 3062
|
[45] |
Mao K, Yang Z, Li J, Zhou X, Li X and Hu J 2017 Talanta 175 338
|
[46] |
Mao K, Zhou Z, Han S, Zhou X, Hu J, Li X and Yang Z 2018 Talanta 190 263
|
[47] |
Song L, Mao K, Zhou X and Hu J 2016 Talanta 146 285
|
[48] |
Wang A Q, Chang C M and Mou C Y 2005 J. Phys. Chem. B 109 18860
|
[49] |
Yen C W, Lin M L, Wang A, Chen S A, Chen J M and Mou C Y 2009 J. Phys. Chem. C 113 17831
|
[50] |
Slater T J A, Macedo A, Schroeder S L M, Burke M G, O'Brien P, Camargo P H C and Haigh S J 2014 Nano Lett. 14 1921
|
[51] |
Liu S, Chen G, Prasad P N and Swihart M T 2011 Chem. Mater. 23 4098
|
[52] |
Senapati S, Ahmad A, Khan M I, Sastry M and Kumar R 2005 Small 1 517
|
[53] |
Huang Z, Meng G, Hu X, Pan Q, Huo D, Zhou H, Ke Y and Wu N 2019 Nano Res. 12 449
|
[54] |
Samal A K, Polavarapu L, Rodal-Cedeira S, Liz-Marzán L M, Pérez-Juste J and Pastoriza-Santos I 2013 Langmuir 29 15076
|
[55] |
Yang Y, Shi J, Kawamura G and Nogami M 2008 Scr. Mater. 58 862
|
[56] |
Qi W H and Lee S T 2010 J. Phys. Chem. C 114 9580
|
[57] |
Gould A L, Logsdail A J and Catlow C R A 2015 J. Phys. Chem. C 119 23685
|
[58] |
Chen, Curley B C, Rossi G and Johnston R L 2007 J. Phys. Chem. C 111 9157
|
[59] |
Baletto F and Ferrando R 2005 Rev. Mod. Phys. 77 371
|
[60] |
Wang B, Liu M, Wang Y and Chen X 2011 J. Phys. Chem. C 115 11374
|
[61] |
Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
|
[62] |
Bon M, Ahmad N, Erni R and Passerone D 2019 J. Chem. Phys. 151 064105
|
[63] |
Li X G, Hu C Z, Chen C, Deng Z, Luo J and Ong S P 2018 Phys. Rev. B 98 094104
|
[64] |
Zhou J, Yang Y, Yang Y, Kim D S, Yuan A, Tian X, Ophus C, Sun F, Schmid A K, Nathanson M, Heinz H, An Q, Zeng H, Ercius P and Miao J 2019 Nature 570 500
|
[65] |
Löwen H 1994 Phys. Rep. 237 249
|
[66] |
Hansen K 2013 Statistical Physics of Nanoparticles in the Gas Phase (The Netherlands: Springer)
|
[67] |
Pawlow P 1969 Z. Phys. Chem. 65 1
|
[68] |
Asoro M, Damiano J and Ferreira P J 2009 Microsc. Microanal. 15 706
|
[69] |
Nanda K K, Sahu S N and Behera S N 2002 Phys. Rev. A 66 013208
|
[70] |
Liu X, Wen X and Hoffmann R 2018 ACS Catal. 8 3365
|
[71] |
Skriver H L and Rosengaard N M 1992 Phys. Rev. B 46 7157
|
[72] |
Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
|
[73] |
Duan B, Zhou J, Fang Z, Wang C, Wang X, Hemond H F, Chan-Park M B and Duan H 2015 Nanoscale 7 12606
|
[74] |
Karn-orachai K, Sakamoto K, Laocharoensuk R, Bamrungsap S, Dharakul T and Miki K 2017 RSC Adv. 7 14099
|
[75] |
Karn-orachai K, Sakamoto K, Laocharoensuk R, Bamrungsap S, Songsivilai S, Dharakul T and Miki K 2016 RSC Adv. 6 97791
|
[76] |
Pincella F, Song Y, Ochiai T, Isozaki K, Sakamoto K and Miki K 2014 Chem. Phys. Lett. 605-606 115
|
[77] |
Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J and Sun X 2014 Nanotechnology 25 245301
|
[78] |
Lewis L J, Jensen P and Barrat J L 1997 Phys. Rev. B 56 2248
|
[79] |
Jin B, Sushko M L, Liu Z, Jin C and Tang R 2018 Nano Lett. 18 6551
|
[80] |
Wang J, Chen S, Cui K, Li D and Chen D 2016 ACS Nano 10 2893
|
[81] |
Wang J and Shin S 2017 RSC Adv. 7 21607
|
[82] |
Nakao K, Ishimoto T and Koyama M 2014 J. Phys. Chem. C 118 15766
|
[83] |
Boles M A, Engel M and Talapin D V 2016 Chem. Rev. 116 11220
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|