Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104402    DOI: 10.1088/1674-1056/ac0789
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia

Wen-Yu Li(李文宇)1, Wen-Tao Li(李文涛)4, Bang-Quan Li(李榜全)1, Li-Juan Dong(董丽娟)1, Tian-Hua Meng(孟田华)1, Ge Huo(霍格)3, Gong-Ying Liang(梁工英)2, and Xue-Gang Lu(卢学刚)2,†
1 Institute of Solid State Physics, Shanxi Datong University, Datong 037009, China;
2 MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China;
3 College of Material Science and Engineering, Shenzhen University, Shenzhen 518061, China;
4 No. 93601 Troops of PLA
Abstract  A nontoxic and biocompatible thermoseed is developed for the magnetic hyperthermia. Two kinds of thermoseed materials: hierarchical hollow and solid lichee-like Fe3O4 assemblies, are synthesized by a facile hydrothermal method. The crystal structure of Fe3O4 assemblies are characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Moreover, the prepared Fe3O4 assemblies are used as a magnetic heat treatment agent, and their heating efficiency is investigated. Compared to solid assembly, hollow lichee-like Fe3O4 assembly exhibits a higher specific absorption rate of 116.53 W/g and a shorter heating time, which is ascribed to its higher saturation magnetization, larger initial particle size, and the unique hierarchical hollow structure. Furthermore, the magnetothermal effect is primarily attributed to Néel relaxation. Overall, we propose a facile and convenient approach to enhance the heating efficiency of magnetic nanoparticles by forming hollow hierarchical assemblies.
Keywords:  magnetic hyperthermia      heating efficiency      hierarchical Fe3O4 assemblies  
Received:  05 January 2021      Revised:  20 March 2021      Accepted manuscript online:  03 June 2021
PACS:  44.10.+i (Heat conduction)  
  87.85.J- (Biomaterials)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61975162), Youth Research Foundation of Shanxi Datong University (Grant No. 2019Q1), Important R&D Projects of Shanxi Province, China (Grant No. 201803D121083), and Shanxi Scholarship Council, China (Grant No. 2020-135).
Corresponding Authors:  Xue-Gang Lu     E-mail:  xglu@xjtu.edu.cn

Cite this article: 

Wen-Yu Li(李文宇), Wen-Tao Li(李文涛), Bang-Quan Li(李榜全), Li-Juan Dong(董丽娟), Tian-Hua Meng(孟田华), Ge Huo(霍格), Gong-Ying Liang(梁工英), and Xue-Gang Lu(卢学刚) Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia 2021 Chin. Phys. B 30 104402

[1] Liu R T, Liu J, Tong J Q, Tang T, Kong W C, Wang X W, Li Y and Tang J T 2012 Progress in Natural Science: Materials International 22 31
[2] Sharifi I, Shokrollahi H and Amiri S 2012 J. Magn. Magn. Mater. 324 903
[3] Zhang L Y, Gu H C and Wang X M 2007 J. Magn. Magn. Mater. 311 228
[4] Ling Y, Tang X Z, Wang F J, Zhou X H, Wang R H, Deng L M, Shang T T, Liang B, Li P, Ran H T, Wang Z G, Hu B, Li C H, Zuo G Q and Zheng Y Y 2017 RSC Adv. 7 2913
[5] Hao H Q, Ma Q M, He F and Yao P 2014 J. Mater. Chem. B 2 7978
[6] Zhao L Y, Tang J T and Feng S S 2010 Nanomedicine 5 1305
[7] Cho M J, Cervadoro A, Ramirez M R, Stigliano C, Brazdeikis A, Colvin V L, Civera P, Key J and Decuzzi P 2017 Nanomaterials 7 72
[8] Zhao L Y, Liu J Y, Ouyang W W, Li D Y, Li L, Li L Y and Tang J T 2013 Chin. Phys. B 22 108104
[9] Yu Y K and Sun D X 2010 Expert Rev. Clin. Pharmacol. 3 117
[10] Nikitin A, Khramtsov M, Garanina A, Mogilnikov P, Sviridenkova N, Shchetinin I, Savchenko A, Abakumov M and Majouga A 2019 J. Magn. Magn. Mater. 469 443
[11] Yang Y X, Huang M W, Qian J M, Gao D Q and Liang X L 2020 Sci. Rep. 10 8331
[12] Kolen'ko Y V, Banobre-Lopez M, Rodriguez-Abreu C, Carbo-Argbay E, Sailsman A, Pineiro-Redondo Y, Cerqueira M F, Petrovykh D, Kovnir K, Lebedev O I and Rivas J 2014 J. Phys. Chem. C 118 8691
[13] Tong S, Quinto C A, Zhang L L, Mohindra P and Bao G 2017 Acs Nano 11 6808
[14] Geng S, Yang H T, Ren X, Liu Y H, He S L, Zhou J, Su N, Li Y F, Xu C M, Zhang X Q and Cheng Z H 2016 Chem. Asian. J. 11 2996
[15] Guardia P, Corato R D, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hwenandez M, Gazeau F, Manna L and Pellegrino T 2012 Acs Nano 6 3080
[16] Myrovali E, Maniotis N, Makridis A, Terzopoulou A, Ntomprougkidis V, Simeonidis K, Sakellari D, Kalogirou O, Samaras T, Salikhov R, Spasova M, Farle M, Wiedwald U and Angelakeris M 2016 Sci. Rep. 6 37934
[17] Duguet E, Vasseur S, Mornet S, Goglio G, Demourgues A, Portier J, Grasset F, Veverka P and Pollert E 2006 Bull Mater. Sci. 29 581
[18] Yang X Y, Zhang X Y, Ma Y F, Huang Y, Wang Y S and Chen Y S 2009 J. Mater. Chem. 19 2710
[19] Li X Y, Si Z J, Lei Y Q, Li X N, Tang J K, Song S Y and Zhang H J 2011 Crystengcomm 13 642
[20] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G and Wan L J 2006 Adv. Mater. 18 2426
[21] Lu X G, Huo G, Liu X L, Liang G Y, Han Z J and Song X P 2012 Crystengcomm 14 5622
[22] Whitesides G M and Boncheva M 2002 Proc. Natl. Acad. Sci. 99 4769
[23] Li W Y, Huo G, Huang Y, Dong L J and Lu X G 2018 Acta Phys. Sin. 67 177501 (in Chinese)
[24] Han L, Li S Y, Yang Y, Zhao F M, Huang J and Chang J 2008 J. Biomater. Appl. 22 433
[25] Timko M, Dzarova A, Kovac J, Skumiel A, Jozefczak A, Hornowski T, Gojzewski H, Zavisova V, Koneracka M, Sprincova A, Strbak O, Kopcansky P and Tomasovicova N 2009 J. Magn. Magn. Mater. 321 1521
[26] Mathew D S and Juang R S 2007 Chem. Eng. J. 129 51
[27] Dave S R and Gao X H 2009 WIREs Nanomedicine and Nanobiotechnology 1 583
[28] Laurent S, Dutz S, Häfeli U O and Mahmoudi M 2011 Adv. Colloid Interface Sci. 166 8
[29] Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
[1] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[2] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[3] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[4] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[5] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[6] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
No Suggested Reading articles found!