INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys |
Hüseyin Yıldırım1,† and Ali Kemal Garip2 |
1 Yenice Vocational School, Karabuk University, Karabuk, Turkey; 2 Department of Physics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey |
|
|
Abstract The classical molecular dynamics simulations in canonical NVT ensemble conditions are used to investigate the melting transition in different heating rates of Pt-Ag-Au ternary nanoalloys. In order to obtain the initial configurations used in the molecular dynamics simulations, optimizing the chemical ordering of Pt13AgnAu42-n (n=0-42) ternary nanoalloys was performed using the Basin-Hopping algorithm which would not allow changes in the icosahedron structure. The Gupta many-body potential was used to model interatomic interactions in both molecular dynamics simulations and optimization simulations. The melting transitions of selected Pt-Ag-Au nanoalloys were explored using caloric curves and Lindemann parameters. There have been two identified types of melting mechanisms, one includes sudden jump behavior in the caloric curve and the other is an isomerization while melting transition. The temperature range in which the isomerization takes place depends on the heating rate value.
|
Received: 25 January 2021
Revised: 08 March 2021
Accepted manuscript online: 12 March 2021
|
PACS:
|
36.40.-c
|
(Atomic and molecular clusters)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
Corresponding Authors:
Hüseyin Yıldırım
E-mail: huseyinyildirim@karabuk.edu.tr
|
Cite this article:
Hüseyin Yıldırım and Ali Kemal Garip Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys 2021 Chin. Phys. B 30 108201
|
[1] Cezar H M, Rondina G G and Da Silva J L F 2019 J. Chem. Phys. 151 204301 [2] Taran S, Garip A K and Arslan H 2020 Chin. Phys. B 29 077801 [3] Taran S 2020 Sakarya University Journal of Science 24 501 [4] Taran S, Garip A K and Arslan H 2020 J. Cluster Sci. 32 199 [5] Yildirim H and Arslan H 2020 Int. J. Mod. Phys. C 31 2050078 [6] Taran S 2019 Comput. Theor. Chem. 1166 112576 [7] Garip A K 2018 Int. J. Mod. Phys. C 29 1850084 [8] Wang L C, Zhong Y, Jin H, Widmann D, Weissmüller J and Behm R J 2013 Beilstein J. Nanotechnol. 4 111 [9] Li S, Chen H, Liu X, Liu H, Ma J and Zhu Y 2020 Chem. Sci. 11 8000 [10] Christopher P and Linic S 2008 J. Am. Chem. Soc. 130 11264 [11] Zhu L, Zhang W, Zhu J and Cheng D 2017 App. Catal. A: General 538 27 [12] Woldu A R 2020 Nanoscale 12 8626 [13] Liu J H, Wang A, Chi Y S, Lin H P and Mou C Y 2005 J. Phys. Chem. B 109 40 [14] Liu X, Li Y, Lee J W, Hong C Y, Mou C Y and Jang B W L 2012 Appl. Catal. A: General 439-440 8 [15] Zheng J, Qu J, Lin H, Zhang Q, Yuan X, Yang Y and Yuan Y 2016 ACS Catal. 6 6662 [16] Xia Z, Li C M and Dai L 2019 Matter 1 1445 [17] Noh S H, Han B and Ohsaka T 2015 Nano Res. 8 3394 [18] Zhang H, Wang H, Cao J and Ni Y 2017 J. Alloys Compd. 698 654 [19] Lan J, Li C, Liu T and Yuan Q 2019 J. Saudi Chem. Soc. 23 43 [20] Wang X, Zhang L, Gong H, Zhu Y, Zhao H and Fu Y 2016 Electrochim. Acta 212 277 [21] Thongthaia K, Pakawanitb P, Chenlekb N, Kimc J, Anantad S and Srisombat L 2017 Nanotechnology 28 375602 [22] Tao J, Ji Q, Shao G, Li Z, Liu T and Wen Y 2017 J. Alloys Compd. 716 240 [23] Fan T, Liu T, Zheng J, Shao G and Wen Y 2015 J. Mater. Sci. 50 3308 [24] Cuevas-Muñiz F M, Gurrola M P, Tellez-Vazquez O, Esparza R, Guerra-Balcazar M, Arriaga L G and Ledesma-Garcia J 2015 Int. J. Hydrogen Energy 40 17284 [25] Deng L, Hu W, Deng H and Xiao S 2010 J. Phys. Chem. C 114 11026 [26] Kristian N and Wang X 2008 Electrochem. Commun. 10 12 [27] Oliveira R C P, Sevim M, Sljukic B, Sequira C A C, Metin Ö and Santos D M F 2020 Catal. Today 357 291 [28] Kang J, Chen T, Zhang D and Guo L 2016 Nano Energy 23 145 [29] Wang M, He Y, Li R, Ma Z, Zhang Z and Wang X 2015 Electrochim. Acta 178 259 [30] Fu G, Xia B, Ma R, Chen Y, Tang Y and Lee J 2015 Nano Energy 12 824 [31] Ferrando R, Jellinek J and Johnston R L 2008 Chem. Rev. 108 845 [32] Toshima N and Zhang H 2012 Macromol. Symp. 317 149 [33] Zhang H, Okumura M and Toshima N 2011 J. Phys. Chem. C 115 14883 [34] Ferrando R 2016 Structure and Properties of Nanoalloys in Frontiers of Nanoscience (Amsterdam: Elsevier) Vol. 10 [35] Echt O, Sattler K and Recknagel E 1981 Phys. Rev. Lett. 47 1121 [36] Wu X and Sun Y 2017 J. Nanopart. Res. 19 201 [37] Michaelian K, Rendon N and Garzon I L 1999 Phys. Rev. B 60 2000 [38] Lambie S G, Weal G R, Blackmore C E, Palmer R E and Garden A L 2019 Nanoscale Adv. 1 2416 [39] Wu X, Cai W and Shao X 2009 J. Comput. Chem. 30 1992 [40] Chen F, Curley B C, Rossi G and Johnston R L 2007 J. Phys. Chem. C 111 9157 [41] Arianfar F, Rostamian R and Behnejad H 2017 Phys. Chem. Res. 5 359 [42] Piotrowski M J, Piquini P and Da Silva J L F 2012 J. Phys. Chem. C 116 18432 [43] Zhao Z, Li M, Cheng D and Zhu J 2014 Chem. Phys. 441 152 [44] Garip A K 2019 Mol. Simul. 45 1004 [45] Wales D J and Doye J P K 1997 J. Phys. Chem. A 101 5111 [46] Cleri F and Rosato V 1993 Phys. Rev. B 48 22 [47] Gupta R P 1981 Phys. Rev. B 23 6265 [48] Pacheco-Contreras R, Juárez-Sánchez J O, Dessens-Félix M, Aguilera-Granja F, Fortunelli A and Posada-Amarillas A 2018 Comput. Mater. Sci. 141 30 [49] Bush I J, Todorov I T and Smith W 2006 Comput. Phys. Commun. 175 323 [50] Todorov I T, Smith W, Trachenko K and Dove M T 2006 J. Mater. Chem. 16 1911 [51] Datta S 2019 AIP Adv. 9 115316 [52] Garip A K 2020 Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 1732 [53] Arslan H, Garip A K and Taran S 2019 J. Nanopart. Res. 21 130 [54] Gould A L, Logsdail A J and Catlow C R A 2015 J. Phys. Chem. C 119 23685 [55] Chen F and Johnston R L 2008 Appl. Phys. Lett. 92 023112 [56] Kuntová Z, Rossi G and Ferrando R 2008 Phys. Rev. B 77 205431 [57] Mottet C, Goniakowski J, Baletto F, Ferrando R and Treglia G 2004 Phase Trans. 77 101 [58] Kart H H, Yildirim H, Kart S O and Çağin T 2014 Mater. Chem. Phys. 147 204 [59] Lee M S, Chacko S and Kanhere D G 2005 J. Chem. Phys. 123 164310 [60] Stukowski A 2012 Modelling Simul. Mater. Sci. Eng. 20 045021 [61] Ackland G J and Jones A P 2006 Phys. Rev. B 73 054104 [62] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|