CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation |
Xinxin Li(李欣欣)1,2,3, Zhen Deng(邓震)1,3,4,†, Sen Wang(王森)1,2,3, Jinbiao Liu(刘金彪)2,5, Jun Li(李俊)6, Yang Jiang(江洋)1,3, Ziguang Ma(马紫光)1,3, Chunhua Du(杜春花)1,3,4, Haiqiang Jia(贾海强)1,3,7, Wenxin Wang(王文新)1,3,7, and Hong Chen(陈弘)1,3,7,‡ |
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4 The Yangtze River Delta Physics Research Center, Liyang 213000, China; 5 Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, China; 6 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method. The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the diameter and Ge composition of the SiGe spheres can be well controlled by adjusting the laser energy density. In addition, the transmission electron microscopy results show that Ge composition inside the SiGe spheres is almost uniform in a well-defined, nearly spherical outline. As a convenient method to prepare sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size, this technique is expected to be useful for SiGe-based material growth and micro/optoelectronic device fabrication.
|
Received: 07 April 2021
Revised: 15 May 2021
Accepted manuscript online: 20 May 2021
|
PACS:
|
61.72.uf
|
(Ge and Si)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
61.80.Ba
|
(Ultraviolet, visible, and infrared radiation effects (including laser radiation))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004218, 61991441, and 61804176), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01000000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2021005). |
Corresponding Authors:
Zhen Deng, Hong Chen
E-mail: zhen.deng@iphy.ac.cn;hchen@iphy.ac.cn
|
Cite this article:
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘) Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation 2021 Chin. Phys. B 30 096104
|
[1] Ronda I B 2009 Surf. Sci. Rep. 64 47 [2] Shiraki Y and Usami N 2011 Silicon-Germanium (SiGe) Nanostructures 1st edn (UK: Woodhead), Part Ⅲ [3] Aqua J N, Berbezier I, Favre L, Frisch T and Ronda A 2013 Phys. Rep. 522 59 [4] Naffouti M, David T, Benkouider A, Favre L, Cabie M, Ronda A, Berbezier I and Abbarchi M 2016 Nanotechnology 27 305602 [5] Brehm M, Lichtenberger H, Fromherz T and Springholz G 2011 Nanoscale Res. Lett. 6 70 [6] Lee E K, Tsybeskov L and Kamins T I 2008 Appl. Phys. Lett. 92 033110 [7] Li S, Huang X, Liu Q, Cao X, Huo F, Zhang H and Gan C L 2012 Nano Lett. 12 5565 [8] Bauer G and Schäffler F 2010 Phys. Status Solidi A 203 3496 [9] Mondiali V, Lodari M, Bordello M, Chrastina D and Bollani M 2016 Microelectron. Eng. 153 88 [10] Chang H T, Wu B L, Cheng S L, Lee T and Lee S W 2013 Nanoscale Res. Lett. 8 349 [11] Chang Y M, Jian S R and Juang J Y 2010 Nanoscale Res. Lett. 5 1456 [12] Zhang L, Golod S V, Deckardt E, Prinz V and Grutzmacher D 2004 Physica E 23 280 [13] Qi D F, Liu H H, Gao W, Sun Q Q, Chen S Y, Huang W, Li C and Lai H K 2013 J. Mater. Chem. C 1 6878 [14] Huang Z P, Wu Y, Fang H, Deng N, Ren T L and Zhu J 2006 Nanotechnol. 17 1476 [15] Hong S, Lee H, Yeo J and Ko S H 2016 Nano Today 11 547 [16] Palneedi H, Park J H, Maurya D, Peddigari M, Hwang G T, Annapureddy V, Kim J W, Choi J J, Hahn B D and Priya S 2018 Adv. Mater. 30 1705148 [17] Yu R X, Shibayama T, Meng X, Takayanagi S, Yoshida Y, Yatsu S and Watanabe S 2014 Appl. Surf. Sci. 289 274 [18] Gorb A, Korotchenkov O, Kuryliuk V, Medvid A, Mozolevskis G, Nadtochiy A and Podolian A 2015 Appl. Surf. Sci. 346 177 [19] Datta D P, Chettah A, Siva V, Kanjilal D and Sahoo P K 2018 Appl. Surf. Sci. 428 676 [20] Wang X, Ding Y, Yuan D J, Hong J I, Liu Y, Wong C P, Hu C G and Wang Z L 2012 Nano Res. 5 412 [21] Zhang W, Yang L Y, Shi Z W, Huo D Y, Peng C S, Yang X N and Miao L L 2018 Optoelectronic Devices and Integration VⅡ, Beijing, China, October 11-13, 2018, 108141M [22] Nakashima T, Kikuchi T, Imokawa K, Nakamura D and Ikenoue H 2019 Synthesis and Photonics of Nanoscale Materials XVI, San Francisco, USA, February 2-3, 2019, 109070P [23] Gaiduk P I, Prakopyeu S L, Hansen J L and Larsen A N 2009 Physica B 404 4701 [24] Qi D F, Huang S H, Wang L T, Shi M, Chen S Y and Grigoropoulos C P 2018 Mater. Lett. 211 250 [25] Wang S, Deng Z, Li X X, Li J, Li Y F, Xu R, Jiang Y, Ma Z G, Wang L, Du C H, Jiang H Q, Wang W X and Chen H 2020 Jpn. J Appl. Phys. 59 050904 [26] Bailey J, Weber E R, Opsal J and Rosencwaig A 1992 Phys. Rev. B 44 13116 [27] Liu Z T, Kim M, Narayanan V and Kan E C 2000 Superlattices Microst. 28 393 [28] Lee C H, Meteer J, Narayanan V and Kan, E C 2005 J. Electron. Mater. 34 1 [29] Groenen J, Carles R, Christiansen S, Albrecht M, Dorsch W, Strunk H P, Wawra H and Wagner G 1997 Appl. Phys. Lett. 71 3856 [30] Cazayous M, Groenen J, Demangeot F, Sirvin R, Caumont M, Remmele T, Albrecht M, Christiansen S, Becker M, Strunk H P and Wawra H 2002 J. Appl. Phys. 91 6772 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|