Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124209    DOI: 10.1088/1674-1056/ac0042
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Computational ghost imaging with deep compressed sensing

Hao Zhang(张浩)1, Yunjie Xia(夏云杰)1,2,†, and Deyang Duan(段德洋)1,2,‡
1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
2 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Research Institute of Laser, Qufu Normal University, Qufu 273165, China
Abstract  Computational ghost imaging (CGI) provides an elegant framework for indirect imaging, but its application has been restricted by low imaging performance. Herein, we propose a novel approach that significantly improves the imaging performance of CGI. In this scheme, we optimize the conventional CGI data processing algorithm by using a novel compressed sensing (CS) algorithm based on a deep convolution generative adversarial network (DCGAN). CS is used to process the data output by a conventional CGI device. The processed data are trained by a DCGAN to reconstruct the image. Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning. Moreover, the background noise can be eliminated well by this method.
Keywords:  computational ghost imaging      compressed sensing      deep convolution generative adversarial network  
Received:  22 March 2021      Revised:  22 April 2021      Accepted manuscript online:  12 May 2021
PACS:  42.30.Va (Image forming and processing)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704221, 11574178, and 61675115) and the Taishan Scholar Project of Shandong Province, China (Grant No. tsqn201812059).
Corresponding Authors:  Yunjie Xia, Deyang Duan     E-mail:  yjxia@qfnu.edu.cn;duandy2015@qfnu.edu.cn

Cite this article: 

Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋) Computational ghost imaging with deep compressed sensing 2021 Chin. Phys. B 30 124209

[1] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[2] Shapiro J H and Boyd R W 2012 Quantum Inf. Process. 11 949
[3] Erkmen B I and Shapiro J H 2010 Adv. Opt. Photon. 2 405
[4] Meyers R E, Deacon K S and Shih Y 2011 App. Phys. Lett. 98 111115
[5] Li M F, Yan L, Yang R, Kou J and Liu S 2019 Acta Phys. Sin. 68 094204
[6] Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 113902
[7] Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D 2016 Phys. Rev. Lett. 117 113901
[8] Zhang A X, He Y, Wu L A, Chen L and Wang B 2018 Optica 5 374
[9] Duan D Y, Zhang L and Xia Y J 2014 J. Opt. Soc. Am A 31 730
[10] Duan D Y and Xia Y J 2021 Opt. Express 29 4978
[11] Shapiro J H 2008 Phys. Rev. A 78 061802
[12] Wang C, Lan R J, Ren C and Cao D Z 2020 Phys. Rev A 101 033819
[13] Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D and Han S S 2016 Sci. Rep. 6 26133
[14] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2012 Appl. Phys. Lett. 101 141123
[15] Erkmen B I 2012 J. Opt. Soc. A 29 782
[16] Duan D Y, Man Z X and Xia Y J 2019 Opt. Express 27 25187
[17] Katza O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[18] Katkovnik V and Astola J 2012 J. Opt. Soc. Am. A 29 1556
[19] Yu W K, Li M F, Yao X R, Liu X F, Wu L A and Zhai G J 2014 Opt. Express 22 7133
[20] Chen Z, Shi J and Zeng G 2016 Appl. Opt. 55 8644
[21] Lyu M, Wang W, Wang H, Wang W, Li G, Chen N and Situ G H 2017 Sci. Rep. 7 17865
[22] He Y, Wang G, Dong G, Zhu S, Chen H, Zhang A and Xu Z 2018 Sci. Rep. 8 6469
[23] Shimobaba T, Endo Y, Nishitsuji T, Takahashi T, Nagahama Y, Hasegawa T, Sano M, Hirayama R, Kakue T, Shiraki A and Ito T 2018 Opt. Commun. 413 147
[24] Barbastathis G, Ozcan A and Situ G 2019 Optica 6 921
[25] Wu Y, Rosca M and Lillicrap T 2019 arXiv:1905.06723v2
[26] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
[27] Jiang W J, Li X Y, Peng X L and Sun B Q 2020 Opt. Express 28 7889
[28] Huang X J 2020 Electron. Commer. R. A 4 21
[1] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[2] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[3] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[4] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[5] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[6] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[7] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[8] Influence of random phase modulation on the imaging quality of computational ghost imaging
Chao Gao(高超), Xiao-Qian Wang(王晓茜), Hong-Ji Cai(蔡宏吉), Jie Ren(任捷), Ji-Yuan Liu(刘籍元), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2019, 28(2): 020201.
[9] Optical encryption scheme based on ghost imaging with disordered speckles
Yu-dong Zhang(张玉东), Sheng-mei Zhao(赵生妹). Chin. Phys. B, 2017, 26(5): 054205.
[10] Compressed sensing sparse reconstruction for coherent field imaging
Bei Cao(曹蓓), Xiu-Juan Luo(罗秀娟), Yu Zhang(张羽), Hui Liu(刘 辉), Ming-Lai Chen(陈明徕). Chin. Phys. B, 2016, 25(4): 040701.
No Suggested Reading articles found!