Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 128101    DOI: 10.1088/1674-1056/abff2c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thermal and mechanical properties and micro-mechanism of SiO2/epoxy nanodielectrics

Tian-Yu Wang(王天宇), Gui-Xin Zhang(张贵新), and Da-Yu Li(李大雨)
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Abstract  In addition to electrical insulation properties, the thermal properties of nanodielectrics, such as glass transition temperature, thermal expansion coefficients, thermal conductivity, and mechanical properties, including Young's modulus, bulk modulus, and shear modulus, are also very important. This paper describes the molecular dynamics simulations of epoxy resin doped with SiO2 nanoparticles and with SiO2 nanoparticles that have been surface grafted with hexamethyldisilazane (HMDS) at 10% and 20% grafting rates. The results show that surface grafting can improve certain thermal and mechanical properties of the system. Our analysis indicates that the improved thermal performance occurs because the formation of thermal chains becomes easier after the surface grafting treatment. The improved mechanical properties originate from two causes. First, doping with SiO2 nanoparticles inhibits the degree of movement of molecular chains in the system. Second, the surface grafting treatment weakens the molecular repulsion between SiO2 and epoxy resin, and the van der Waals excluded region becomes thinner. Thus, the compatibility between SiO2 nanoparticles and polymers is improved by the grafting treatment. The analysis method and conclusions in this paper provide guidance and reference for the future studies of the thermal and mechanical properties of nanodielectrics.
Keywords:  nanodielectric      surface grafting treatment      molecular dynamics simulation      interface properties  
Received:  09 March 2021      Revised:  07 April 2021      Accepted manuscript online:  08 May 2021
PACS:  81.07.Nb (Molecular nanostructures)  
  82.35.Lr (Physical properties of polymers)  
  82.35.Np (Nanoparticles in polymers)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant. Nos. 2017YFB0902503 and 2016YFB0900802).
Corresponding Authors:  Gui-Xin Zhang     E-mail:  guixin@mail.tsinghua.edu.cn

Cite this article: 

Tian-Yu Wang(王天宇), Gui-Xin Zhang(张贵新), and Da-Yu Li(李大雨) Thermal and mechanical properties and micro-mechanism of SiO2/epoxy nanodielectrics 2021 Chin. Phys. B 30 128101

[1] Wang T, Zhang G, Li D, Hou Y and Zhang B 2020 IEEE Trans. Dielectr. Electr. Insul. 27 939
[2] Wang T, Zhang B, Li D, Hou Y and Zhang G 2020 Nanotechnol. 31 324001
[3] Du B, Han C, Li J and Li Z 2020 IEEE Trans. Dielectr. Electr. Insul. 27 418
[4] Wang Y, Wu J, Yin Y and Han T 2020 IEEE Trans. Dielectr. Electr. Insul. 27 377
[5] Yao T, Chen K, Shao T, Zhang C, Zhang C and Yang Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 528
[6] Wang T, Li D, Hou Y and Zhang G 2020 High Volt. Eng. 46 4129 (in Chinese)
[7] Chu P, Zhang H, Zhao J, Gao F, Guo Y, Dang B and Zhang Z 2017 Compos. Pt. A-Appl. Sci. Manuf. 99 139
[8] Yang J, Zhu Z, Huang D and Cao Q 2020 Chin. Phys. B 29 023104
[9] An M, Su M, Deng Q, Song H, Wang C and Shang Y 2020 Chin. Phys. B 29 046201
[10] Xu W, Wu Y, Zhu Y and Liang X 2020 Chin. Phys. B 29 046601
[11] Shen X, Wang Z, Wu Y, Liu X, He Y and Kim J 2016 Nano Lett. 16 3585
[12] Wang Z, Lv Q, Chen S, Li C, Sun S and Hu S 2016 ACS Appl. Mater. Interfaces 8 7499
[13] Fasanelia N and Sundararaghavan V 2016 JOM 68 1
[14] Gou J, Minaie B, Wang B, Liang Z and Zhang C 2004 Comput. Mater. Sci. 31 225
[15] Jung H, Choi H, Kim S, Lee H, Kim Y and Yu J 2017 Compos. Pt. A-Appl. Sci. Manuf. 103 17
[16] Diao Z, Zhao Y, Chen B, Duan C and Song S 2013 J. Anal. Appl. Pyrolysis 104 618
[17] Han Z, Zou L, Xin Z, Zhao T and Zhang L 2018 Trans. China Electr. Society 33 4692 (in Chinese)
[18] Zhang Y, Li J, Wang J, Yang X, Shao W, Xiao S and Wang B 2014 RSC Adv. 4 17083
[19] Lu X, Wang X, Li Q, Huang X, Han S and Wang G 2015 Polym. Degrad. Stabil. 114 72
[20] Liu X, Li X, Liu J, Wang Z, Kong B, Gong X, Yang X, Lin W and Li G 2014 Polym. Degrad. Stabil. 104 62
[21] Rahnamoun A and Duin A 2014 J. Phys. Chem. A 118 2780
[22] Li Q, Huang X, Liu T, Yan J, Wang Z, Zhang Y and Lu X 2016 Trans. China Electr. Society 31 1 (in Chinese)
[23] Wang T, Zhang G, Li D and Hou Y 2020 J. Appl. Phys. 128 025101
[24] Shen L, Zou L, Ding M, Zhao T, Zhang L and Li Q 2020 Appl. Surf. Sci. 505 144197
[25] Bandyopadhyay A, Valavala P, Clancy T, Wise K and Odegard G 2011 Polymer 52 2445
[26] Li C and Strachan A 2015 J. Polym. Sci. Pt. B-Polym. Phys. 53 103
[27] Masoumi S, Arab B and Valipour H 2015 Polymer 70 351
[28] Jund P and Jullien R 1999 Phys. Rev. B 59 13707
[29] Plathe F 1997 J. Chem. Phys. 106 6082
[30] Ju S, Haung T, Liao C and Chang J 2013 Polymer 54 4702
[31] Zhang W, Qing Y, Zhong W, Sui G and Yang X 2017 React. Funct. Polym. 111 60
[32] Shokuhfar A and Arab B 2013 J. Mol. Model. 19 3719
[33] Zhang W, Li H, Gao L, Zhang Q, Zhong W, Sui G and Yang X 2018 Polym. Compos. 39 E945
[34] Yang Q, Yang X, Li X, Lei S and Sui G 2013 RSC Adv. 3 7452
[35] Agari Y, Ueda A and Nagai S 1993 J. Appl. Polym. Sci. 49 1625
[36] Agari Y, Ueda A and Nagai S 1991 J. Appl. Polym. Sci. 43 1117
[37] Voyiatzis E, Rahimi M, Muller-Plathe F and Bohm M 2014 Macromolecules 47 7878
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!