1 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract Using high-resolution angle-resolved and time-resolved photoemission spectroscopy, we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 near the Fermi level. In previously confirmed topological insulator GeBi2Te4 compounds, we confirmed the existence of the Dirac surface state and found that the bulk energy gap is much larger than that in the first-principles calculations. In SnBi2Te4 compounds, the Dirac surface state was observed, consistent with the first-principles calculations, indicating that it is a topological insulator. The experimental detected bulk gap is a little bit larger than that in calculations. In Sn0.571Bi2.286Se4 compounds, our measurements suggest that this nonstoichiometric compound is a topological insulator although the stoichiometric SnBi2Se4 compound was proposed to be topological trivial.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11521404, 12074248, 11974243, and 11804194). D. Q. and W. T. Z. acknowledge additional support from a Shanghai talent program.
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬) Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 2021 Chin. Phys. B 30 127901
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [3] Thouless D J, Kohmoto M, Nightingale M P and Nijs M den 1982 Phys. Rev. Lett. 49 405 [4] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [5] Murakami S, Nagaosa N and Zhang S C 2004 Phys. Rev. Lett. 93 156804 [6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [7] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 [8] Qi X L and Zhang S C 2010 Phys. Today 63 33 [9] Yang Z Q, Jia J F and Qian D 2016 Chin. Phys. B 25 117312 [10] Liu C and Liu X R 2019 Acta Phys. Sin. 68 227901 (in Chinese) [11] Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G and Qi Y 2020 Chin. Phys. Lett. 37 066401 [12] Zhang J, Wang D, Shi M, Zhu T, Zhang H and Wang J 2020 Chin. Phys. Lett. 37 077304 [13] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970 [14] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178 [15] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101 [16] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 [17] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501 [18] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003 [19] Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W, Li Q, Gilbert M J, Chou F, Samarth N and Hasan M Z 2014 Nat. Phys. 10 943 [20] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001 [21] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003 [22] Shi H B, Yan L Q, Su Y T, Wang L, Cao X Y, Bi L Z, Meng Y, Sun Y and Zhao H W 2020 Chin. Phys. B 29 117302 [23] Zhang T Y, Yan Q and Sun Q F 2021 Chin. Phys. Lett. 38 077303 [24] Eremeev S V, Landolt G, Menshchikova T V, Slomski B, Koroteev Y M, Aliev Z S, Babanly M B, Henk J, Ernst A, Patthey L, Eich A, Khajetoorians A A, Hagemeister J, Pietzsch O, Wiebe J, Wiesendanger R, Echenique P M, Tsirkin S S, Amiraslanov I R, Dil J H and Chulkov E V 2012 Nat. Commun. 3 635 [25] Menshchikova T V, Eremeev S V and Chulkov E V 2013 Appl. Surf. Sci. 267 1 [26] Perdew J P and Levy M 1983 Phys. Rev. Lett. 51 1884 [27] Autès G, Isaeva A, Moreschini L, Johannsen J C, Pisoni A, Mori R, Zhang W T, Filatova T G, Kuznetsov A N, Forró L, Van den Broek W, Kim Y, Kim K S, Lanzara A, Denlinger J D, Rotenberg E, Bostwick A, Grioni M and Yazyev O V 2016 Nat. Mater. 15 154 [28] Neupane M, Xu S Y, Wray L A, Petersen A, Shankar R, Alidoust N, Liu C, Fedorov A, Ji H, Allred J M, Hor Y S, Chang T R, Jeng H T, Lin H, Bansil A, Cava R J and Hasan M Z 2012 Phys. Rev. B 85 235406 [29] Sterzi A, Manzoni G, Crepaldi A, Cilento F, Zacchigna M, Leclerc M, Bugnon Ph, Magrez A, Berger H, Petaccia L and Parmigiani F 2018 J. Electron. Spectrosc. Relat. Phenom. 225 23 [30] Kuznetsova L A, Kuznetsov V L and Rowe D M 2000 J. Phys. Chem. Solids 61 1269 [31] Pérez Vicente C, Tirado J L, Adouby K, Jumas J C, Touré A A and Kra G 1999 Inorg. Chem. 38 2131 [32] Heinke F, Urban P, Werwein A, Fraunhofer C, Rosenthal T, Schwarzmüller S, Souchay D, Fahrnbauer F, Dyadkin V, Wagner G and Oeckler O 2018 Inorg. Chem. 57 4427 [33] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723 [34] Yang Y, Tang T, Duan S, Zhou C, Hao D and Zhang W 2019 Rev. Sci. Instrum. 90 063905 [35] Tang T, Wang H, Duan S, Yang Y, Huang C, Guo Y, Qian D and Zhang W 2020 Phys. Rev. B 101 235148 [36] Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S and Shen Z X 2012 Phys. Rev. Lett. 108 117403 [37] Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P and Shen Z X 2013 Phys. Rev. Lett. 111 136802 [38] Ito H, Otaki Y, Tomohiro Y, Ishida Y, Akiyama R, Kimura A, Shin S and Kuroda S 2020 Phys. Rev. Res. 2 043120 [39] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712 [40] Park S R, Han J, Kim C, Koh Y Y, Kim C, Lee H, Choi H J, Han J H, Lee K D, Hur N J, Arita M, Shimada K, Namatame H and Taniguchi M 2012 Phys. Rev. Lett. 108 046805 [41] Wang Y and Gedik N 2013 Phys. Status Solidi RRL 7 64 [42] Wang Y H, Hsieh D, Sie E J, Steinberg H, Gardner D R, Lee Y S, JarilloHerrero P and Gedik N 2012 Phys. Rev. Lett. 109 127401 [43] Vidal F, Eddrief M, Rache Salles B, Vobornik I, Velez-Fort E, Panaccione G and Marangolo M 2013 Phys. Rev. B 88 241410 [44] Kondo T, Nakashima Y, Ishida Y, Kikkawa A, Taguchi Y, Tokura Y and Shin S 2017 Phys. Rev. B 96 241413
Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5 Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[6]
Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2 Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.