Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118202    DOI: 10.1088/1674-1056/abf131
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction

Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  The different fluorescence behavior caused by the excited state proton transfer in 3-hydroxy-4-pyridylisoquinoline (2a) compound has been theoretically investigated. Our calculation results illustrate that the 2a monomer in tetrahydrofuran solvent would not occur proton transfer spontaneously, while the 2a complex in methanol (MeOH) solvent can undergo an asynchronous excited state intramolecular proton transfer (ESIPT) process. The result was confirmed by analyzing the related structural parameters, infrared vibration spectrum and reduced density gradient isosurfaces. Moreover, the potential curves revealed that with the bridging of single MeOH molecular the energy barrier of ESIPT was modulated effectively. It was distinctly reduced to 4.80 kcal/mol in 2a-MeOH complex from 25.01 kcal/mol in 2a monomer. Accordingly, the ESIPT process induced a fluorochromic phenomenon with the assistant of proton-bridge. The elucidation of the mechanism of solvent discoloration will contribute to the design and synthesis of fluorogenic dyes as environment-sensitive probes.
Keywords:  DFT/TDDFT      fluorochromic      excited state intramolecular proton transfer      methanol bridge  
Received:  04 February 2021      Revised:  10 March 2021      Accepted manuscript online:  24 March 2021
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  31.15.ee (Time-dependent density functional theory)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant No. 11874180), the Young and Middle-aged Scientific and Technological Innovation Leaders and Team Projects in Jilin Province (Grant No. 20200301020RQ).
Corresponding Authors:  Ying Shi     E-mail:  shi_ying@jlu.edu.cn

Cite this article: 

Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英) Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction 2021 Chin. Phys. B 30 118202

[1] Karas L J, Wu C H, Ottosson H and Wu J I 2020 Chem. Sci. 11 10071
[2] Zhang Y J, Yang H Y, Ma H L, Bian G F, Zang Q G, Sun J W, Zhang C, An Z F and Wong W Y 2019 Angew. Chem. Int. Ed. Engl. 58 8773
[3] Sun C F, Li Y, Li B, Han J H, Zhou Q, Yin H and Shi Y 2020 J. Mol. Liq. 297 111937
[4] Chrayteh A, Ewels C and Jacquemin D 2020 Phys. Chem. Chem. Phys. 22 854
[5] Yang G, Chen K F, Wang G and Yang D P 2020 Chin. Phys. B 29 103103
[6] Stasyuk A J, Chen Y T, Chen C L, Wu P J and Chou P T 2016 Phys. Chem. Chem. Phys. 18 24428
[7] Zhang X, Han J H, Li Y, Sun C F, Su X, Shi Y and Yin H 2020 Chin. Phys. B 29 038201
[8] Li Y Z, Sun C F, Song P, Ma F C, Kungwan N and Sun M T 2018 Sci. Rep. 8 10089
[9] Liu Z Y, Hu J W, Huang T H, Chen K Y and Chou P T 2020 Phys. Chem. Chem. Phys. 22 22271
[10] Suzuki N, Suda K, Yokogawa D, Kitoh-Nishioka H, Irle S, Ando A, Abegao L M G, Kamada K, Fukazawa A and Yamaguchi S 2018 Chem. Sci. 9 2666
[11] Zhang Z Y, Chen Y A, Hung W Y, Tang W F, Hsu Y H, Chen C L, Meng F Y and Chou P T 2016 Chem. Mater. 28 8815
[12] Mondal A, Mukhopadhyay S, Ahmmed E, Banerjee S, Zangrando E and Chattopadhyay P 2020 J. Phys. Chem. C 124 18181
[13] Li M D, Wong N K, Xiao J, Zhu R, Wu L, Dai S Y, Chen F, Huang G, Xu L, Bai X, Geraskina M R, Winter A H, Chen X, Liu Y, Fang W, Yang D and Phillips D L 2018 J. Am. Chem. Soc. 140 15957
[14] Wu L, Sedgwick A C, Sun X, Bull S D, He X P and James T D 2019 Acc. Chem. Res. 52 2582
[15] Dong H, Yang H, Zhao J, Liu X and Zheng Y 2021 J. Lumin. 231 117840
[16] Yin H, Zhang Y M, Zhao H F, Yang G J, Shi Y, Zhang S X A and Ding D J 2018 Dyes. Pigments 159 506
[17] Zhao J F and Jin B 2021 J. Lumin. 232 117800
[18] Wu F, Lin L, Li X P, Yu Y X and Zhang G L 2008 Chin. Phys. B 17 1461
[19] Yuan Z, Cheng R, Chen P, Liu G and Liang S H 2016 Angew. Chem. Int. Ed. Engl. 55 11882
[20] Hariharan P S, Mothi E M, Moon D and Anthony S P 2016 ACS Appl. Mater. Interfaces 8 33034
[21] Gherasim C, Airinei A, Tigoianu R, Craciun A M, Danac R, Nicolescu A, Isac D L and Mangalagiu I I 2020 J. Mol. Liq. 310 113196
[22] Chrzanowska M, Grajewska A and Rozwadowska M D 2016 Chem. Rev. 116 12369
[23] Gomez Pinheiro G E, Ihmels H and Dohmen C 2019 J. Org. Chem. 84 3011
[24] Raucci U, Chiariello M G and Rega N 2020 J. Chem. Theory. Comput. 16 7033
[25] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 (Gaussian, Inc., Wallingford, 2009)
[26] Stratmann R E, Scuseria G E and Frisch M J 1998 J. Chem. Phys. 109 8218
[27] Sukpattanacharoen C, Salaeh R, Promarak V, Escudero D and Kungwan N 2019 J. Mol. Struc. 1195 280
[28] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[29] Zhou Q, Du C, Yang L, Zhao M, Dai Y and Song P 2017 J. Phys. Chem. A 121 4645
[30] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[31] Schäfer A, Horn H and Ahlrichs R 1992 J. Chem. Phys. 97 2571
[32] Chaihan K and Kungwan N 2020 New J. Chem. 44 8018
[33] Marenich A V, Cramer C J, Truhlar D G, Guido C A, Mennucci B, Scalmani G and Frisch M J 2011 Chem. Sci. 2 2143
[34] Zhou P W and Han K L 2018 Acc. Chem. Res. 51 1681
[35] Han J H, Cao B F, Zhang X, Su X, Diao L H, Yin H and Shi Y 2020 J. Mol. Liq. 306 112894
[36] Yang D, Jia M, Zhang Q and Wang Y 2020 J. Lumin. 219 116913
[37] Scalmani G, Frisch M J, Mennucci B, Tomasi J, Cammi R and Barone V 2006 J. Chem. Phys. 124 094107
[38] Marenich A V, Cramer C J and Truhlar D G 2009 J. Phys. Chem. B 113 6378
[39] Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J and Yang W 2010 J. Am. Chem. Soc. 132 6498
[40] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[41] Du C, Zhou Q, Zhang M, Song P and Ma F 2019 J. Phys. Org. Chem. 32 e3901
[42] Sinha V, Govindarajan N, de Bruin B and Meijer E J 2018 ACS Catalysis 8 6908
[43] Xu L, Zhang T J, Zhang Q L and Yang D P 2020 Chin. Phys. B 29 053102
[44] Li H, Ma L N, Yin H and Shi Y 2018 Chin. Phys. B 27 098201
[45] Yin H and Shi Y 2018 Chin. Phys. B 27 058201
[46] Cao B F, Li Y, Zhou Q, Li B, Su X, Yin H and Shi Y 2021 J. Mol. Liq. 325 115272
[47] Sun C F, Cao B F, Yin H and Shi Y 2020 Chin. Phys. B 29 058202
[48] Dong H, Zhao J, Yang H and Zheng Y 2019 ACS Appl. Bio Mater. 2 3622
[49] Silvi B 1994 Phys. Rev. Lett. 73 842
[50] Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747
[51] Dong H, Zhao J, Yang H and Zheng Y 2018 Org. Chem. Front. 5 1241
[52] Li H, Xin C, Cai J X, Yuan B S, Wei Z and Jin G Y 2020 Org. Electron. 81 105678
[53] Song Y, Liu S, Lu J, Zhang H, Zhang C and Du J 2019 Chin. Phys. B 28 093102
[1] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[2] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[3] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[4] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[5] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[6] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[7] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[8] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[9] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[10] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
No Suggested Reading articles found!