Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097301    DOI: 10.1088/1674-1056/abe92d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of plasmons in doped graphene nanostructures

Xiao-Qin Shu(舒晓琴)1, Xin-Lu Cheng(程新路)2, Tong Liu(刘彤)3, and Hong Zhang(张红)2,†
1 College of Mathematics and Physics, Leshan Normal College, Leshan 614000, China;
2 College of Physics, Sichuan University, Chengdu 610065, China;
3 School of Science, Xihua University, Chengdu 610065, China
Abstract  The operating frequencies of surface plasmons in pristine graphene lie in the terahertz and infrared spectral range, which limits their utilization. Here, the high-frequency plasmons in doped graphene nanostructures are studied by the time-dependent density functional theory. The doping atoms include boron, nitrogen, aluminum, silicon, phosphorus, and sulfur atoms. The influences of the position and concentration of nitrogen dopants on the collective stimulation are investigated, and the effects of different types of doping atoms on the plasmonic stimulation are discussed. For different positions of nitrogen dopants, it is found that a higher degree of symmetry destruction is correlated with weaker optical absorption. In contrast, a higher concentration of nitrogen dopants is not correlated with a stronger absorption. Regarding different doping atoms, atoms similar to carbon atom in size, such as boron atom and nitrogen atom, result in less spectral attenuation. In systems with other doping atoms, the absorption is significantly weakened compared with the absorption of the pristine graphene nanostructure. Plasmon energy resonance dots of doped graphene lie in the visible and ultraviolet spectral range. The doped graphene nanostructure presents a promising material for nanoscaled plasmonic devices with effective absorption in the visible and ultraviolet range.
Keywords:  doped graphene      absorption spectroscopy      time-dependent density functional theory  
Received:  10 December 2020      Revised:  28 January 2021      Accepted manuscript online:  24 February 2021
PACS:  68.65.Pq (Graphene films)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  31.15.ee (Time-dependent density functional theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974253), the National Key Research and Development Program of China (Grant No. 2017YFA0303600), and the Scientific Research Project of Leshan Normal University, China (Grant Nos. XJR17007, LZDP012, and DGZZ202009).
Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红) First-principles study of plasmons in doped graphene nanostructures 2021 Chin. Phys. B 30 097301

[1] Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q and Fan C 2010 ACS Nano 4 4317
[2] Ruiz O N, Fernando K A S, Wang B J, Brown N A, Luo P G, McNamara N, Vangsness M, Sun Y P and Bunker C E 2011 ACS Nano 5 8100
[3] Liao K H, Y. S. Lin, Macosko C W and Haynes C L 2011 Appl. Mater. Inter. 3 2607
[4] Li N, Zhang X M, Song Q, Su R G, Zhang Q, Kong T, Liu L W, Jin G, Tang M L and Cheng G S 2011 Biomaterials 32 9374
[5] Lee W C, Lim C H Y X, Shi H, Tang L A L, Wang Y, Lim C T and Loh K P 2011 ACS Nano 5 7334
[6] Wang Y X, Yang Q, Liu C, Wang G X, Wu M, Liu H, Sui Y M and Yang X Y 2020 Chin. Phys. Lett. 37 058201
[7] Min S K, Kim W Y, Cho Y and Kim K S 2011 Nat. Nanotechnol. 6 162
[8] Yuk Y J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A and Alivisatos A P 2012 Science 336 61
[9] Schwierz F 2010 Nat. Nanotechnol. 5 487
[10] Myung S, Park J, Lee H, Kim K S and Hong S 2010 Adv. Mater. 22 2045
[11] Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K and Özyilmaz B 2012 ACS Nano 6 3935
[12] Lee W H, Park J, Sim S H, Lim S, Kim K S, Hong B H and Cho K 2011 J. Am. Chem. Soc. 133 4447
[13] Park S Y, Park J, Sim S H, Sung M G, Kim K S, Hong B H and Hong S 2011 Adv. Mater. 23 H263
[14] Cohen-Tanugi D and Grossman J C 2012 Nano Lett. 12 3602
[15] Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y and Hu Z Y 2018 Chin. Phys. Lett. 35 067101
[16] Huh S, Park J, Kim K S, Hong B H and Kim S B 2011 ACS Nano 5 3639
[17] Lee W H, Park J, Kim Y, Kim K S, Hong H and Cho K 2011 Adv. Mater. 23 3460
[18] Song Z P, Zhu H O, Shi W T, Sun D L and Ruan S C 2018 Chin. Phys. Lett. 35 127801
[19] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[20] Pisula W and BVMullen K 2007 Chem. Rev. 107 718
[21] Shao Y, Wang J, Wu H, Liu J, Assay I A and Lin Y 2010 Electroanalysis 22 1027
[22] Tao R, Li L, Zhu L J, Yan Y D, Guo L H, Fan X D and Zeng C G 2020 Chin. Phys. Lett. 37 077301
[23] Ren X X, Kang W, Cheng Z F and Zheng R L 2016 Chin. Phys. Lett. 33 126501
[24] Goenka S, Sant V and Sant S 2014 J. Control. Release 173 75
[25] Liu J, Cui L and Losic D 2013 Acta Biomater. 9 9243
[26] Zhou X F, Fang H Y and Tang C M 2019 Acta Phys. Sin. 68 053601 (in Chinese)
[27] He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Song X B, Han T T, Feng Z H and Cai S J 2016 Chin. Phys. Lett. 33 086801
[28] Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z and Jin Z 2010 Biomacromolecules 11 2345
[29] Bose S, Kuila T, Uddin, M E, Kim N H, Lau A K T and Lee J H 2010 Polymer 51 5921
[30] Chu Y H, Zhu F D, Wen Z L, Chen W Y, Chen Q N and Ma T X 2020 Chin. Phys. B 29 117401
[31] Xu F and Zhang L 2019 Chin. Phys. B 28 117403
[32] Gu Q Y, Xing D Y and Sun J 2019 Chin. Phys. Lett. 36 097401
[33] Tang R, Yang Xu Y, Zhang H and Cheng X L 2021 Chin. Phys. B 30 017804
[34] Liu Z K, Xie Y N, Geng L, D K and Song P 2016 Chin. Phys. Lett. 33 027802
[35] Li G, Cheng H W, Guo L F, Wang K Y and Cheng Z J 2018 Chin. Phys. Lett. 35 076801
[36] Xiao S, Zhu X, Li B H and Mortensen N A 2016 Front. Phys. 11 117801
[37] Viola G, Wenger T, Kinaret J and Fogelström M 2017 New J. Phys. 19 073027
[38] Huang S, Song C, Zhang G and Yan H 2017 Nanophotonics 6 1191
[39] García de Abajo F J 2014 ACS Photon. 1 135
[40] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
[41] Principi A, Vignale G, Carrega M and Polini M 2013 Phys. Rev. B 88 121405
[42] Novko D 2017 Nano Lett. 17 6991
[43] Luo W W, Cai W, Wu W, Xiang Y X, Ren M X, Zhang X Z and Xu J J 2016 2D Mater. 3 045001
[44] Zhang C, Fu L, Liu N, Liu M, Wang Y and Liu Z 2011 Adv. Mater. 23 1020
[45] Bangert U, Pierce W, Kepaptsoglou D M, Ramasse, Zan Q R, Gass M H, Van den Berg J A, Boothroyd C B, Amani J and Hofsass H 2013 Nano Lett. 13 4902
[46] Casolo S, Martinazzo R, Tantardini G F 2011 J. Phys. Chem. C 115 3250
[47] Zhou Y C, Zhang H L and Deng W Q 2013 Nanotechnology 24 225705
[48] Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V and Rao C N R 2009 Adv. Mater. 21 4726
[49] Wang H B, Maiyalagan T and Wang X 2012 ACS Catal. 781
[50] Ramasse Q M, Seabourne C R, Kepaptsoglou D M, Zan R, Bangert U and Scott A J 2013 Nano Lett. 13 4989
[51] Kepaptsoglou D, Hardcastle T P, Seabourne C R, Bangert U, Zan, Amani J A, Hofsass H, Nicholls R J, Brydson R M D, Scott A J and Ramasse Q M 2015 ACS Nano 9 11398
[52] Schiros T, Nordlund D, Palova L, Prezzi D, Zhao L, Kim K S, Wurstbauer U, Gutierrez C, Delongchamp D, Jaye C, Fischer D, Ogasawara H, Pettersson L G M, Reichman D R, Kim P, Hybertsen M S and Pasupathy A N 2012 Nano Lett. 12 4025
[53] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
[54] Luo X G, Qiu T, Lu W B and Ni Z H 2013 Mater. Sci. Eng. R. 74 351
[55] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[56] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[57] Yabana K and Bertsch G F 1996 Phys. Rev. B 54 4484
[58] Delley B 1990 J. Chem. Phys. 92 508
[59] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[60] Shu X Q, Zhang H, Cheng X L and Miyamoto Y 2016 Phy. Rev. B 93 195424
[61] Chen Y, Yang X C, Liu Y J, Zhao J X, Cai Q H and Wang X Z 2013 J. Mol. Gr. Model. 39 126
[62] Ao Z, Yang J, Li S and Jiang Q 2008 Chem. Phys. Lett. 461 276
[63] Sharma S and Verma A S 2013 Physica B 427 12
[64] Ganji M D, Sharifi N, Ardjmand M and Ahangari M G 2012 Appl. Surf. Sci. 261 697
[65] Zhang H, Luo X, Song H, Lin X, Lu X and Tang Y 2014 Appl. Surf. Sci. 317 511
[66] Wang W D, Zhang Y X, Shen C L and Chai Y 2016 AIP. Adv. 6 025317
[67] Li H T, Liu Y Q and Zhu D B 2011 J. Mater. Chem. 21 3335
[68] Qu L T; Liu Y, Baek J B and Dai L M 2010 ACS Nano 4 1321
[69] Sheng Z H, Tao L, Chen J J, Bao W J, Wang F B and Xia X H 2011 ACS Nano 5 4350
[70] Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X and Huang S 2012 ACS Nano 6 205
[71] Shahrokhi M and Leonard C 2017 J. Alloys Comd. 693 1185
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[4] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[5] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[6] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[7] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[8] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[9] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[10] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[11] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[12] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[13] Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact
Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义). Chin. Phys. B, 2020, 29(2): 023401.
[14] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[15] Unconventional chiral d-wave superconducting state in strained graphene
Feng Xu(徐峰), Lei Zhang(张磊). Chin. Phys. B, 2019, 28(11): 117403.
No Suggested Reading articles found!