Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038103    DOI: 10.1088/1674-1056/27/3/038103
Special Issue: TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials Prev   Next  

Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures

Haifei Zhan(占海飞)1,2, Yuantong Gu(顾元通)2
1 School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia;
2 School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology(QUT), Brisbane QLD 4001, Australia
Abstract  This review summarizes the current studies of the thermal transport properties of one-dimensional (1D) carbon nanomaterials and nanoarchitectures. Considering different hybridization states of carbon, emphases are laid on a variety of 1D carbon nanomaterials, such as diamond nanothreads, penta-graphene nanotubes, supernanotubes, and carbyne. Based on experimental measurements and simulation/calculation results, we discuss the dependence of the thermal conductivity of these 1D carbon nanomaterials on a wide range of factors, including the size effect, temperature influence, strain effect, and others. This review provides an overall understanding of the thermal transport properties of 1D carbon nanomaterials and nanoarchitectures, which paves the way for effective thermal management at nanoscale.
Keywords:  diamond nanothread      carbon nanotube      thermal conductivity      molecular dynamics simulations  
Received:  11 October 2017      Revised:  29 January 2018      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  81.05.uj (Diamond/nanocarbon composites)  
  61.46.-w (Structure of nanoscale materials)  
  65.80.Ck (Thermal properties of graphene)  
Fund: Project supported by Australian Research Council (ARC) Discovery Project DP170102861.
Corresponding Authors:  Yuantong Gu     E-mail:  yuantong.gu@qut.edu.au

Cite this article: 

Haifei Zhan(占海飞), Yuantong Gu(顾元通) Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures 2018 Chin. Phys. B 27 038103

[1] Wang X and Gan X 2017 Chin. Phys. B 26 034203
[2] Balandin A A 2011 Nat. Mater. 10 569
[3] Xu Y, Li Z and Duan W 2014 Small 10 2182
[4] Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410
[5] Zhan H F, Zhang Y Y, Bell J M and Gu Y T 2014 J. Phys. D:Appl. Phys. 47 015303
[6] Chen J, Zhang G and Li B 2012 Nano Lett. 12 2826-32
[7] Hu G J and Cao B Y 2014 Chin. Phys. B 23 096501
[8] Feng Y, Zhu J and Tang D W 2014 Chin. Phys. B 23 083101
[9] Guo Z X, Zhang D and Gong X G 2011 Phys. Rev. B 84 075470
[10] Chen X, Xu Y, Zou X, Gu B L and Duan W 2013 Phys. Rev. B 87 155438
[11] Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954
[12] Zhang G and Li B 2005 J. Chem. Phys 123 114714
[13] Chen J, Zhang G and Li B 2010 Nano Lett. 10 3978
[14] Kim P, Shi L, Majumdar A and McEuen P 2001 Phys. Rev. Lett. 87 215502
[15] Pop E, Mann D, Wang Q, Goodson K and Dai H 2006 Nano Lett. 6 96
[16] Gang Z and Yong Z 2017 Chin. Phys. B 26 034401
[17] Guo Z X, Ding J W and Gong X G 2012 Phys. Rev. B 85 235429
[18] Cao H Y, Guo Z X, Xiang H and Gong X G 2012 Phys. Lett. A 376 525
[19] Zhang H S, Guo Z X, Gong X G and Cao J X 2012 J. Appl. Phys. 112 123508
[20] Cao H Y, Xiang H and Gong X G 2012 Solid State Commun. 152 1807
[21] Guo Z, Zhang D and Gong X G 2009 Appl. Phys. Lett. 95 163103
[22] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[23] Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z and Shi L 2013 Nano Lett. 13 550
[24] Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G and Su G 2014 Phys. Rev. B 89 054310
[25] Hu M, Zhang X and Poulikakos D 2013 Phys. Rev. B 87 195417
[26] Xu W, Zhu L, Cai Y, Zhang G and Li B 2015 J. Appl. Phys. 117 214308
[27] Ding Z, Pei Q X, Jiang J W and Zhang Y W 2015 J. Phys. Chem. C 119 16358
[28] Cai Y, Lan J, Zhang G and Zhang Y W 2014 Phys. Rev. B 89 035438
[29] Liu X, Zhang G, Pei Q X and Zhang Y W 2013 Appl. Phys. Lett. 103 133113
[30] Li D, Xu Y, Chen X, Li B and Duan W 2014 Appl. Phys. Lett. 104 143108
[31] Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B and Zhang Y W 2015 Adv. Funct. Mater. 25 2230
[32] Zhu H, Xu Y, Gu B L and Duan W 2012 New J. Phys. 14 013053
[33] Huang H, Xu Y, Zou X, Wu J and Duan W 2013 Phys. Rev. B 87 205415
[34] Chang C, Fennimore A, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A and Zettl A 2006 Phys. Rev. Lett. 97 085901
[35] Pei Q X, Zhang Y W, Sha Z D and Shenoy V B 2012 Appl. Phys. Lett. 100 101901
[36] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A and Ruoff R S 2012 Nat. Mater. 11 203
[37] Pei Q X, Sha Z D and Zhang Y W 2011 Carbon 49 4752
[38] Zhang G and Li B 2010 Nanoscale 2 1058
[39] Wang Y, Zhan H, Xiang Y, Yang C, Wang C M and Zhang Y 2015 J. Phys. Chem. C 119 12731
[40] Luo T and Lloyd J R 2012 Adv. Funct. Mater. 22 2495
[41] Han Z and Fina A 2011 Prog. Polym. Sci. 36 914
[42] Yu Y, Wu L and Zhi J 2014 Angew. Chem. Int. Ed. 53 14326
[43] Guo J, Wen B, Melnik R, Yao S and Li T 2011 Diam. Relat. Mater. 20 551
[44] Hiromu S 1997 Jpn. J. Appl. Phys. 36 7745
[45] Coffinier Y, Szunerits S, Drobecq H, Melnyk O and Boukherroub R 2012 Nanoscale 4 231
[46] Luo D, Wu L and Zhi J 2010 Chem. Commun. 46 6488
[47] Fitzgibbons T C, Guthrie M, Xu E S, Crespi V H, Davidowski S K, Cody G D, Alem N and Badding J V 2015 Nat. Mater. 14 43
[48] Stojkovic D, Zhang P and Crespi V H 2001 Phys. Rev. Lett. 87 125502
[49] Xu E S, Lammert P E and Crespi V H 2015 Nano Lett. 15 5124
[50] Chen B, Hoffmann R, Ashcroft N W, Badding J, Xu E and Crespi V 2015 J. Am. Chem. Soc. 137 14373
[51] Olbrich M, Mayer P and Trauner D 2014 Org. Biomol. Chem. 12 108
[52] Barua S R, Quanz H, Olbrich M, Schreiner P R, Trauner D and Allen W D 2014 Chem. Eur. J. 20 1638
[53] Zhan H, Zhang G, Tan V B C, Cheng Y, Bell J M, Zhang Y W and Gu Y 2016 Nanoscale 8 11177
[54] Silveira J F R V and Muniz A R 2017 Carbon 113 260
[55] Van Duin A C, Dasgupta S, Lorant F and Goddard W A 2001 J. Phys. Chem. A 105 9396
[56] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys 112 6472
[57] Zhan H, Zhang G, Zhang Y, Tan V B C, Bell J M and Gu Y 2016 Carbon 98 232
[58] Zhan H, Zhang G, Bell J M and Gu Y 2016 Carbon 107 304
[59] Feng C, Xu J, Zhang Z and Wu J 2017 Carbon 124 9
[60] Silveira J F R V and Muniz A R 2017 Phys. Chem. Chem. Phys. 19 7132
[61] Zhan H, Zhang G, Tan V B, Cheng Y, Bell J M, Zhang Y W and Gu Y 2016 Adv. Funct. Mater. 26 5279
[62] Zhan H, Zhang G, Tan V B C and Gu Y 2017 Nat. Commun. 8 14863
[63] Iijima S 1991 Nature 354 56
[64] De Volder M F, Tawfick S H, Baughman R H and Hart A J 2013 Science 339 535
[65] Zhigilei L V, Salaway R N, Wittmaack B K and Volkov A N 2017 Carbon Nanotubes for Interconnects:Process, Design and Applications, (Todri-Sanial A, et al., Ed.) (Cham:Springer International Publishing) pp. 129-61
[66] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372
[67] Xia D, Xue Q, Xie J, Chen H, Lv C, Besenbacher F and Dong M 2010 Small 6 2010
[68] Chen M, Zhan H, Zhu Y, Wu H and Gu Y 2017 J. Phys. Chem. C 121 9642
[69] Xu W, Zhang G and Li B 2015 J. Chem. Phys 143 154703
[70] Viculis L M, Mack J J and Kaner R B 2003 Science 299 1361
[71] Liu Z, Xue Q, Tao Y, Li X, Wu T, Jin Y and Zhang Z 2015 Phys. Chem. Chem. Phys. 17 3441
[72] Zhan H F, Zhang G Y, Bell J M and Gu Y T 2015 J. Phys. Chem. C 119 27562
[73] Shi X, Yin Q, Pugno N M and Gao H 2013 J. Appl. Mech. 81 021014
[74] Ren Z and Gao P X 2014 Nanoscale 6 9366
[75] Wang J S, Ye H M, Qin Q H, Xu J and Feng X Q 2012 Proc. Royal Soc. A 468 609
[76] Wang J S, Wang G, Feng X Q, Kitamura T, Kang Y L, Yu S W and Qin Q H 2013 Sci. Rep. 3 3102
[77] Zhu H, Shimada T, Wang J, Kitamura T and Feng X 2016 J. Appl. Mech. 83 101010
[78] Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H and Ajayan P M 2002 Phys. Rev. Lett. 89 075505
[79] Terrones M, Terrones H, Banhart F, Charlier J C and Ajayan P M 2000 Science 288 1226
[80] Zhan H F, Zhang G, Bell J M and Gu Y T 2014 Appl. Phys. Lett. 105 153105
[81] Xia K, Zhan H, Wei Y and Gu Y 2014 Beilstein J. Nanotechnol. 5 329
[82] Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji A R O and Kittrell C 2012 Nat. Commun. 3 1225
[83] Zhou R, Liu R, Li L, Wu X and Zeng X C 2011 J. Phys. Chem. C 115 18174
[84] Coluci V R, Galvao D S and Jorio A 2006 Nanotechnology 17 617
[85] Qin Z, Feng X Q, Zou J, Yin Y and Yu S W 2007 Appl. Phys. Lett. 91 043108
[86] Coluci V R, Pugno N M, Dantas S O, Galvao D S and Jorio A 2007 Nanotechnology 18 335702
[87] Jiang K, Li Q and Fan S 2002 Nature 419 801
[88] Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q and Fan S 2006 Adv. Mater. 18 1505
[89] Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Ren Y, Shen J, Niu Z and Zhou W 2009 Adv. Mater. 21 603
[90] Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J and Pasquali M 2013 Science 339 182
[91] Zhang M, Atkinson K R and Baughman R H 2004 Science 306 1358
[92] Zhang M, Fang S, Zakhidov A A, Lee S B, Aliev A E, Williams C D, Atkinson K R and Baughman R H 2005 Science 309 1215
[93] Zhao Z L, Li B and Feng X Q 2016 Int. J. Non Linear Mech. 81 19
[94] Ji X Y, Zhao M Q, Wei F and Feng X Q 2012 Appl. Phys. Lett. 100 263104
[95] Zhao Z L, Zhao H P, Wang J S, Zhang Z and Feng X Q 2014 J. Mech. Phys. Solids 71 64
[96] Lima M D, Li N, Jung de Andrade M, Fang S, Oh J and Spinks G M 2012 Science 338 928
[97] Lima M D, Hussain M W, Spinks G M, Naficy S, Hagenasr D, Bykova J S, Tolly D and Baughman R H 2015 Small 11 3113
[98] Weng W, Sun Q, Zhang Y, Lin H, Ren J, Lu X, Wang M and Peng H 2014 Nano Lett. 14 3432
[99] Lu W, Zu M, Byun J H, Kim B S and Chou T W 2012 Adv. Mater. 24 1805
[100] Haley M M, Brand S C and Pak J J 1997 Angew. Chem. Int. Ed. 36 836
[101] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[102] Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256
[103] Zhang Y Y, Pei Q X and Wang C M 2012 Appl. Phys. Lett. 101 081909
[104] Xia K, Zhan H and Gu Y 2015 Carbon 95 1061
[105] Hu N, Yang Z, Wang Y, Zhang L, Huang X, Wei H, Wei L and Zhang Y 2014 Nanotechnology 25 025502
[106] Zhang Y Y, Pei Q X and Wang C M 2012 Comput. Mater. Sci. 65 406
[107] Wu W, Guo W and Zeng X C 2013 Nanoscale 5 9264
[108] Li G, Li Y, Qian X, Liu H, Lin H, Chen N and Li Y 2011 J. Phys. Chem. C 115 2611
[109] Baughman R H 2006 Science 312 1009
[110] Cannella C B and Goldman N 2015 J. Phys. Chem. C 119 21605
[111] Robertson A W and Warner J H 2013 Nanoscale 5 4079
[112] Chalifoux W A and Tykwinski R R 2010 Nat. Chem. 2 967
[113] Liu X, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 24156
[114] Kocsis A J, Yedama N A R and Cranford S W 2014 Nanotechnology 25 335709
[115] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075
[116] Hu M, Jing Y and Zhang X 2015 Phys. Rev. B 91 155408
[117] Muller-Plathe F 1997 J. Chem. Phys. 106 6082
[118] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[119] Chen J, Zhang G and Li B 2010 J. Phys. Soc. Jpn. 79
[120] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[121] Liang T, Devine B, Phillpot S R and Sinnott S B 2012 J. Phys. Chem. A 116 7976
[122] de Tomas C, Suarez-Martinez I and Marks N A 2016 Carbon 109 681
[123] Borca-Tasciuc T, Achimov D, Liu W L, Chen G, Ren H W, Lin C H and Pei S S 2001 Microsc. Therm. 5 225
[124] Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
[125] Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A 2012 Phys. Rev. B 85 195436
[126] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.:Condens. Matter 14 783
[127] Guo J, Wen B, Melnik R, Yao S and Li T 2010 Physica E 43 155
[128] Jiang J W, Wang B S and Wang J S 2011 Phys. Rev. B 83 235432
[129] Padgett C W, Shenderova O and Brenner D W 2006 Nano Lett. 6 1827
[130] Dickel D and Daw M S 2010 Comput. Mater. Sci. 47 698
[131] Gao Y, Wang H and Daw M 2015 Modell. Simul. Mater. Sci. Eng. 23 045002
[132] Simkin M and Mahan G 2000 Phys. Rev. Lett. 84 927
[133] Chen Y, Li D, Lukes J R, Ni Z and Chen M 2005 Phys. Rev. B 72 174302
[134] Zhu T and Ertekin E 2014 Phys. Rev. B 90 195209
[135] Latour B, Volz S and Chalopin Y 2014 Phys. Rev. B 90 014307
[136] Xiang B, Tsai C B, Lee C J, Yu D P and Chen Y Y 2006 Solid State Commun. 138 516
[137] Prasher R, Tong T and Majumdar A 2008 Nano Lett. 8 99
[138] Hu M and Poulikakos D 2012 Nano Lett. 12 5487
[139] Zhan H, Bell J M and Gu Y 2015 RSC Adv. 5 48164
[140] Zhan H, Zhang Y, Bell J M and Gu Y 2015 J. Phys. Chem. C 119 1748
[141] Cao J X, Yan X H, Xiao Y and Ding J W 2004 Phys. Rev. B 69 073407
[142] Cao J X, Yan X H, Xiao Y, Tang Y and Ding J W 2003 Phys. Rev. B 67 045413
[143] Eucken A 1911 Phys. Z 12 1101
[144] Holland M 1964 Phys. Rev. 134 A471
[145] Zhu T and Ertekin E 2016 Nano Lett. 16 4763
[146] Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W and Zhang X 2017 Comput. Mater. Sci. 137 195
[147] Wang F Q, Yu J, Wang Q, Kawazoe Y and Jena P 2016 Carbon 105 424
[148] Wang Y and Zhang Y 2015 Proceedings of the 2015 IEEE m 65th Electronic Components and Technology Conference May 26-29, 2015 San Diego CA, USA, p. 1234
[149] Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M and Iijima S 2006 Nat. Mater. 5 987
[150] Hu L J, Liu J, Liu Z, Qiu C Y, Zhou H Q and Sun L F 2011 Chin. Phys. B 20 096101
[151] Hone J, Whitney M, Piskoti C and Zettl A 1999 Phys. Rev. B 59 R2514
[152] Zhang L, Zhang G, Liu C and Fan S 2012 Nano Lett. 12 4848
[153] Jiang J W 2015 Carbon 81 688
[154] Marconnet A M, Yamamoto N, Panzer M A, Wardle B L and Goodson K E 2011 ACS Nano 5 4818
[155] Aitkaliyeva A and Shao L 2013 Appl. Phys. Lett. 102 063109
[156] Xue-Kun C, Chang-Yong C, Jun L and Ke-Qiu C 2017 J. Phys. D:Appl. Phys. 50 345301
[157] Zhao H, Wei D, Zhou L, Shi H and Zhou X 2015 Comput. Mater. Sci. 106 69
[158] Sun H, Mumby S J, Maple J R and Hagler A T 1994 J. Am. Chem. Soc. 116 2978
[159] Wang M and Lin S 2016 Sci. Rep. 5 18122
[160] Gang Z 2015 Nanoscale Energy Transport and Harvesting:A Computational Study (New York:CRC Press)
[161] Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
[162] Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J and Zhang G 2014 Appl. Phys. Lett. 105 103902
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[10] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[11] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[12] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[13] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[14] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[15] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
No Suggested Reading articles found!