Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 073101    DOI: 10.1088/1674-1056/26/7/073101

Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media

Ping Guo(郭平)1, Yi-Kun Pan(潘意坤)1, Long-Long Li(李龙龙)2, Bin Tang(唐斌)2
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
2 School of Sciences, Southwest Petroleum University, Chengdu 610500, China

The hydrate has characteristics of low thermal conductivity and temperature sensitivity. To further analysis the mechanism of thermal conductivity and provide method for the exploitation, transportation and utilization of hydrate, the effect of decomposition and thermal conductivity of methane hydrate in porous media has been studied by using the molecular dynamics simulation. In this study, the simulation is carried out under the condition of temperature 253.15 K–273.15 K and pressure 1 MPa. The results show that the thermal conductivity of methane hydrate increases with the increase of temperature and has a faster growth near freezing. With the addition of porous media, the thermal conductivity of the methane hydrate improves significantly. The methane hydrate-porous media system also has the characteristics of vitreous body. With the decrease of the pore size of the porous media, thermal conductivity of the system increases gradually at the same temperature. It can be ascertained that the porous media of different pore sizes have strengthened the role of the thermal conductivity of hydrates.

Keywords:  methane hydrate      thermal conductivity      molecular dynamics simulations      porous media  
Received:  31 March 2017      Revised:  10 May 2017      Accepted manuscript online: 
PACS: (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  44.30.+v (Heat flow in porous media)  
  65.40.-b (Thermal properties of crystalline solids)  

Project supported by the National Natural Science Foundation of Special Fund and Chinese Academy of Engineering (Grant No.L1322021).

Corresponding Authors:  Ping Guo     E-mail:

Cite this article: 

Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌) Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media 2017 Chin. Phys. B 26 073101

[1] Bagherzadeh S A, Alavi S, Ripmeester J A and Englezos P 2013 Fluid Phase Equilib 358 114
[2] Max M D 2003 Natural Gas Hydrate in Oceanic and Permafrost Environments (Dordrecht:Kluwer Academic Publishers) pp. 9——16
[3] Holder G D and Angert P 1981 Intersociety Energy Conversion Engineering Conference August 9, 1981 Atlanta, USA, p. 810812
[4] Holder G D, Kamath V A and Godbole S P 1984 Annu. Rev. Energy 9 427
[5] Kvenvolden K A 1988 Chem. Geol. 71 41
[6] Max M D and Lowrie A 1996 J. Pet. Geol. 19 41
[7] Englezos P 1993 Ind. Eng. Chem. Res. 32 1251
[8] Kumar P, Turner D and Sloan E D 2004 J. Geophys. Res. 109 241
[9] Xu W and Ruppel C 1999 J. Geophys. Res. Solid Earth 104 5081
[10] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[11] Lin W Q, Xu B, Chen L, Zhou F and Chen J L 2016 Acta Phys. Sin. 65 133102 (in Chinese)
[12] Xu B, Lin W Q, Wang X G, Zeng S W, Zhou G Q and Chen J L 2017 Chin. Phys. B 26 033103
[13] Hu G J and Cao B Y 2014 Chin. Phys. B 23 096501
[14] Wu T Y, Lai W S and Fu B Q 2013 Chin. Phys. B 22 076601
[15] McMullan R K and Jeffrey G A 1965 J. Chem. Phys. 42 2725
[16] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[17] Jorgensen W L, Madura J D and Swenson C J 1984 J. Am. Chem. Soc. 106 6638
[18] Plimpton S 1995 J. Comp. Phys. 117 1
[19] Tse J S, Klein M L and McDonald I R 1983 J. Phys. Chem. 87 4198
[20] Abascal J L F, Sanz E, Fernàndez R G and Vega C 2005 J. Chem. Phys. 122 234511
[21] Lopes P E M, Murashov V, Tazi M, Demchuk E and MacKerell A D 2006 J. Phys. Chem. B 110 2782
[22] Rodger P M 1991 AIChE J. 37 1511
[23] Forrisdahl O K, Kwamme B and Haymet A D 1996 J. Mol. Phys. 89 819
[24] Hirai S, Okazaki K, Tabe Y and Kawamura K 1997 Energy Convers. Manage. 38 S301
[25] Handa Y P and Cook J G 1987 J. Phys. Chem. 91 6327
[26] Waite W F, Pinkston J and Kirby S H 2002 Preliminary Laboratory Thermal Conductivity Measurements in Pure Methane Hydrate and Methane Hydrate-sediment Mixtures:a Progress Report (Yokohama:Proceedings of the Fourth International Conference on Gas Hydrate) pp. 728——733
[27] Desmedt A, Bedouret L, Pefoute E, Pouvreau M, Say-Liang-Fat S and Alvarez M 2012 Eur. Phys. J. Special Topics 213 103
[28] Li D L, Liang D Q, Fan S S and Peng H 2010 J. Nat. Gas. Chem. 19 229
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[5] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[6] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[9] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[10] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[14] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[15] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
No Suggested Reading articles found!